
Using Formal Methods to Enable More Secure Vehicles:

Kathleen Fisher

Tufts University

16 September, 2014

DARPA's HACMS Program

(Slides based on original DARPA HACMS slides)

Pervasive Vulnerability to Cyber Attack

SCADA Systems Vehicles Medical Devices

Computer Peripherals

Communication Devices

Appliances

Modern Automobile: Many Remote Attack Vectors

Short-range wireless

Entertainment

Mechanic Long-range wireless

Source: www.custom-build-
computers.com

Source: CanOBD2 Source: www.diytrade.com
Source:

www.theunlockr.com

Source: Koscher, K., et al.
“Experimental Security Analysis of a Modern Automobile”

Source: www.wikipedia.org Source: www.zedomax.com

Source: christinayy.blogspot.com

© Bluetooth SIG, Inc.

© WiFi Alliance

Source: American Car Company

Control Systems
•  Air gaps & obscurity

•  Trying to adopt cyber approaches, but
technology is not a good fit:

•  Resource constraints, real-time deadlines

•  Extreme cost pressures

•  Patches may have to go through lengthy
verification & validation processes

•  Patches could require recalls

Cyber Systems
•  Anti-virus scanning, intrusion detection

systems, patching infrastructure

•  This approach cannot solve the problem.

•  Not convergent with the threat

•  Focused on known vulnerabilities; can miss
zero-day exploits

•  Can introduce new vulnerabilities and
privilege escalation opportunities

Securing Cyber-Physical Systems: State of the Art

DISTRIBUTION F - Further dissemination only as directed by DARPA Public Release Center or higher DoD authority

Additional security layers often create vulnerabilities…

6

Vulnerability Title Fix Avail? Date Added

!"#$%&'()#(*&+,#-),**()&.)(/&0(-1,)2&3),-,4,*&!,4/*&3)"5"*(6(&784/*/9,#&:$*#()/;"*"-<& 0,& =>?@>?ABA&

C(D&E/-&:FGH&H,D$*(&GG!&+,##(49,#&F(#"/*&,I&G()5"4(&:$*#()/;"*"-<& J(8& =>?K>?ABA&

3E3&L";/8(M6(#M"DNOL&P$#49,#&,QR;<R,#(&S$Q()&T5()U,1&:$*#()/;"*"-<& 0,& =>?A>?ABA&

V#-()#(-&7%W*,)()&=&L-,G-/94EXH!NOL&EXH!&G/#"9Y/9,#&S<W/88&Z(/2#(88& 0,& =>B=>?ABA&

H"4),8,[&Z"#D,18&'();(),8&L3/88&X\(&X"42(-L&C(W*/<&G(4$)"-<&S<W/88&:$*#()/;"*"-<&& 0,& =>B]>?ABA&

+"84,&^#"_(D&Z")(*(88&0(-1,)2&N^Z0O&H$*9W*(&G(4$)"-<&:$*#()/;"*"9(8& J(8& =>B`>?ABA&

+,aW$-()&.88,4"/-(8&T#(5"(1&H,#"-,)&LD,G/5(bc8WL&C(a,-(&+,D(&7%(4$9,#&:$*#()/;"*"-<& 0,& =>B`>?ABA&

TW(#GG!&L88*dM6(-M2(<M(%4\/#6(NOL&^8(R.[()RP)((&H(a,)<&+,))$W9,#&:$*#()/;"*"-<& 0,& =>B?>?ABA&

.D,;(&.4),;/-&/#D&C(/D()&P,#-&3/)8"#6&C(a,-(&+,D(&7%(4$9,#&:$*#()/;"*"-<& 0,& =>BA>?ABA&

TW(#Te4(&VaW)(88&P"*(&H$*9W*(&S$Q()&T5()U,1&:$*#()/;"*"9(8& 0,& =>BA>?ABA&

!"#$%&'()#(*&3.RCVG+&L*(Db4L&G-/42&S$Q()&T5()U,1&:$*#()/;"*"-<& J(8& =>Af>?ABA&

:%Z,)28&F(;$66"#6&G()5"4(&G(4$)"-<RS<W/88&:$*#()/;"*"-<& 0,& =>A`>?ABA&

:%Z,)28&H$*9W*(&G(4$)"-<&:$*#()/;"*"9(8& 0,& =>A@>?ABA&

H"4),8,[&V#-()#(-&7%W*,)()&P)/a(&S,)D()&3),W()-<&S$Q()&T5()U,1&:$*#()/;"*"-<& 0,&]>?f>?ABA&

G<a/#-(4&.#95")$8&+,)W,)/-(&7Db&.*()-&H/#/6(a(#-&G()5"4(&C(a,-(&3)"5"*(6(&784/*/9,#&:$*#()/;"*"-<& 0,&]>?=>?ABA&

H"4),8,[&T$-*,,2&Z(;&.44(88&I,)&7%4\/#6(&G()5()&?AAd&+),88&G"-(&C(g$(8-&&P,)6()<&:$*#()/;"*"-<& 0,&]>?`>?ABA&

H"4),8,[&F")(4-h&F")(4-3*/<&H$*9W*(&F(#"/*&TI&G()5"4(&:$*#()/;"*"9(8& 0,&]>??>?ABA&

October 2010 Vulnerability Watchlist

UNCLASSIFIED

UNCLASSIFIED

1/3 of the vulnerabilities
are in security software!

We need a fundamentally
different approach

Forget the myth of the air gap – the control
system that is completely isolated is history.
 -- Stefan Woronka, 2011
Siemens Director of Industrial Security Services

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

SAT Solvers and Infrastructure Development:
Critical Enablers for High Assurance Systems

[A] significant part of the effort in existing projects was spent on the further development of verification
tools, on formal models for low-level programming languages and paradigms, and on general proof
libraries. The sharing of substantial parts of the verification tools between Verisoft and L4.verified
demonstrates that there is a significant degree of re-usability... Future efforts will be able to build on
these tools and reach far-ranging verification goals faster, better, and cheaper.

Gerwin Klein, Formal OS Verification—An Overview.

Interactive Theorem Provers
•  seL4 microkernel

[9000 LoC:C, SOSP 09]
•  compCert verifying C compiler

[6K LoC:ML, POPL 06]
Automatic Theorem Provers
•  Verve OS Nucleus

[1.5K LoC:x86, PLDI 10]
•  Baby Hypervisor

[1K LoC:C, VSTTE 10]
Model Checkers
•  Microsoft device drivers

[30K LoC:C, PLDI 01, CACM 11]
•  ADGS-2100 Window Manager

[16K Simulink blocks, CACM 10]
Courtesy: Daniel Le Berre

Picking 80 problem point,
best time has dropped
from 1000 (2002) to 40
seconds (2010).

HACMS:
Clean-Slate Methods for High-Assurance Software

Code Synthesis
Domain Specific

Languages (DSLs)
Interactive Theorem

Prover as PL

High Assurance: Ensuring Correctness, Safety, Security

DRAPER*/AIS/
U. Oxford
Traditional
penetration
testing; novel
formal methods
approach

HACMS Program Structure

2. Operating Systems 3. Control Systems 4. Research Integration 5. Red Team 1. Vehicle Experts

	
	

	
	
	 	 	

UPenn*/UCLA
Synthesize attack-
resilient control
systems	
	 	

HRL*/GM
American-Built
Automobile

Program Timeline:
•  BAA Release: Feb 23, 2012
•  Kick-Off: Aug 8-10, 2012
•  End of Phase 1: Jan 2014
•  End of Phase 2: July 2015
•  End of Phase 3: Jan 2017

Performers:
•  8 Primes (*)
•  22 Organizations Total

Boeing
Pilot-able Unmanned
Little Bird Helicopter

NICTA
Synthesize file systems,
device drivers, glue code;
Verified sel4 kernel;
Verified RTOS

Galois
Embedded DSLs;
Synthesize and verify
control system code

RC*/U. Minn
Compositional
verification;
Integrated workbench

SRI*/UIUC
EF-SMT solvers;
Synthesize monitors
and wrappers

SRI*
Synthetic sensors;
Synthesis for
controllers of hybrid
systems

Princeton*/Yale/
MIT
Build & verify in Coq
OS for vehicle control;
Verifying compiler for
concurrent code;
Program logics

SRI*
Lazy Composition;
Evidential Tool Bus &
Kernel of Truth;
Vehicle Integration

Kestrel*
Synthesize protocols:
refinement of high-
level spec to low-level
implementations

CMU*/Drexel/
SpiralGen/UIUC
Map high-level
spec into low-level
C code; Extend
Spiral for hybrid
systems

© Boeing

Source: American Car Company

Attacker could crash legitimate ground control station & hijack quadcopter in flight.

Quadcopter: Initial Security Assessment

Source: DIY Drones

(Systems were designed to ensure connectivity, not security)

The Evolving SMACCMCopter Architecture

Rockwell
Collins / UMN

NICTA

Galois

Research
Vehicle

0 Phase 1 16 mo. 12 6

Monolithic SW
No RTOS
No security

Monolithic Ardupilot
Software

HW Abstraction Layer

FreeRTOS

PX4: ARM Cortex M4
St

ab
ilit

y
FreeRTOS / eChronos

PX4: ARM Cortex M4

NICTA eChronos

PX4: ARM Cortex M4
Ot

he
r

Le
ga

cy

Ar
du

pil
ot

St
ab

ilit
y

Ot
he

r

Mo
nit

or

Ar
du

pil
ot

Glue code

System requirements

NICTA RTOS

Response to DoS
Embedded DSL (Ivory)
Factored autopilot tasks

Generate executable

AADL translation, generate glue code

FM Workbench
AADL model of
HW & SW

Verification of system requirements

HAL HAL Glue code

•  The SMACCMCopter flies:

•  Stability control, altitude hold, directional hold, and DOS detection and response.

• GPS waypoint navigation 80% implemented.

•  Air Team proved system-wide security properties:

•  The system is memory safe.

•  The system ignores malformed messages.

•  The system ignores non-authenticated messages.

•  All “good” messages received by SMACCMCopter radio will reach the motor controller.

•  Red Team: Found no security flaws in six weeks with full access to source code.

•  Penetration Testing Expert:
The SMACCMCopter is probably “the most secure UAV on the planet.”

The SMACCMCopter: 18-Month Assessment

Open source: autopilot and tools available

from http://smaccmpilot.org

Source: DIY Drones

Rockwell Collins (UMinn) – Technical Area 4

•  Task Summary
•  Develop formal architecture model for SMACCMCopter and Boeing’s Unmanned Little Bird (ULB)
•  Develop compositional verification tool (AGREE) and architecture-based assurance case tool (Resolute)
•  Develop code synthesis tools to generate build code

•  Performance Summary
•  Generated software for Research Vehicle (~75KLOC), 60% high assurance.

•  Created AADL models of HW & SW architecture for SMACCMCopter (~3.6K LOC) and ULB
•  Extended AGREE tool for compositional reasoning and proved 10 properties about vehicle safety

•  Developed Resolute tool for capturing & evaluating assurance case arguments linked to AADL model

•  Developed assurance cases for 6 security requirements for information flow and memory safety

•  Developed synthesis tool to generate configuration data & glue code for OS/platform HW

References
•  Your What is My How,

IEEE Software (March 2013)
•  Resolute: An Assurance Case Language for

Architecture Models, HILT (October 2014).

Galois – Technical Area 3

•  Task Summary
•  Synthesize flight-control code, models, and properties from one specification
•  Generate safe low level-code in a scalable way by creating embedded domain-specific languages

(Ivory and Tower) and using the host language (Haskell) as an expressive macro language.

•  Performance Summary
•  Created Ivory, an open-source EDSL for synthesizing safe low-level code.

• No buffer overflows, no null pointer dereference, no memory leaks, safe system calls.

•  Created Tower, an open-source EDSL for describing tasks and the connections between them.
• Hides dangerous low-level scheduling primitives, tracks channel type information,

generates AADL code to support analysis and glue-code generation

•  Designed & built SMACCMCopter, the first high-assurance UAV autopilot, in <2 engineer-years
• ~10KLOC Ivory & Tower yields ~50KLOC C++

•  EDSL compilers automatically generate >2500 properties, 6KLOC of architecture models

• Hardware Abstraction Layer (HAL) from SMACCMPilot in current use by hobbyist UAV community with over 40K members

•  Flew demo at Pentagon (altitude hold, position hold, stability, DOS detection)

•  Designed & built secure communication system:
• Open-source, low-bandwidth secure communication protocol for small UAVs

•  Transitioned to Boeing and hobbyist community

EDSLs

Properties Models Code

Reference:
Building Embedded Systems with Embedded
DSLs (Experience Report), ICFP (Sept 2014)

•  seL4: First formally-verified OS microkernel
•  Ported to run on SMACCMCopter and ULB
•  Formal specification and implementation of new

HW-virtualization features
•  Previously verified: correctness of kernel binary
•  Security properties: integrity and confidentiality
•  Code: 8830LoC C; Proof: 400KLoC Isabelle

•  eChronos: high-assurance RTOS product line
•  6 RTOS variants generated (76 possible)
•  Code: 2.4KLoC, Variant Specification: 650LoC

Isabelle
•  Automatic proof of safe execution.

Proof of high-level properties, e.g. scheduler
fairness, correct signaling: 5 KLoC

•  Formally Verified OS Components
•  Generated high-assurance FLASH file system from

2 domain specific languages (3KLoC), 10KLoC
language correctness proofs. File system design
performs on par with mainstream file systems.

•  High-performance CAN and SPI drivers
implemented as CAmkES components (5.6KLoC)

•  Security analysis of air-ground link protocol

•  CAmkES: High-Assurance Component Platform
•  Formal semantics for CAmkES component

platform ADL (1.2KLoC)
•  Generated glue-code in Isabelle/HOL

(generated glue code spec, 5.3KLoC generator)
•  Generated correctness proofs (1.2KLoC) & proof

of safe execution

NICTA – Technical Area 2

•  Task Summary
•  Formally verify OS kernels: seL4 microkernel (now open-source!) and eChronos RTOS
•  Synthesize OS components and automated proofs from DSLs (file systems and device drivers)
•  Provide verified CAmkES component platform for rapid system construction

•  Performance Summary

Reference:
Comprehensive Formal Verification of an OS
Microkernel, TOCS (Feb 2014)

Boeing – Technical Area 1

Unmanned Little Bird
(Airborne VSM Configuration)

Common Unmanned
Control System

(CUCS)

Ground Data
Terminal
(GDT)

Air Data
Terminal
(ADT)

Flight
Control

Computer

External
C4I Systems

Vehicle Specif ic
Module
(VSM)

Data Link
(DL)

• Task Summary
•  Integrate HACMS technologies into ULB

• Substitute eChronos on the Flight Control Computer
and seL4 on the Vehicle Specific Module (VSM)

• Use HACMS-generated secure components to replace
elements of the existing ULB software

•  Use the HACMS workbench to verify security
properties of the resulting system

•  Support flight demo at the end of Phase 3.
• Performance Summary

•  Ported VSM to run on seL4
• New hardware supports seL4 memory protection
•  Incorporates Air Team authentication protocol

•  Phase 2 VSM architecture designed to support
application of all 3 Air Team technologies

• Completed initial AADL model of Phase 2 architecture
for use in HACMS Workbench

The air team is on-track for a live flight demo on the
Unmanned Little Bird at the end of the Phase 3

Air Team: SMACCMCopter

Rockwell
Collins / UMN

NICTA

Galois

Research
Vehicle

18 Phase 2 34mo. 30 24

System requirements

Driver/protocol verification

Distributed functionality
Embedded DSL (Ivory)

AADL translation
generate glue code

FM Workbench
AADL model of
Flight + Mission

Verification of system requirements

eChronos

PX4: ARM Cortex M4

Fli
gh

t

Co
mm

Se
c

Ar
du

pil
ot

HAL Glue code

eChronos

Pixhawk

Fli
gh

t

Co
mm

Se
c

Glue code

Odroid: A15 CA
N

eChronos

Pixhawk

Fli
gh

t

Mi
ss

ion

Glue code

Odroid: A15 CA
N

seL4

Glue code

New hardware

seL4

RE
D

TE

AM

Flight
Computer

Mission
Computer

Mission =
CommSec +
GCS

CAmkES

Linux

Barriers to adoption of HACMS-like technology:
•  Lack of trained workforce (estimated <1000 formal methods experts in US)
•  Lack of commercial support for formal-methods tools (COTS rules!)
•  Difficulties interfacing with legacy tools (thousands) and code bases

(millions)
•  Uncertainty about maintainability of high-assurance artifacts

•  The B-52 has been flying since 1955

•  Qualification of tool chain (eg, DO-178C, DO-326)
•  Need for traceability
•  Resource constraints (hardware, SWAP)
•  Multicore (gulp!): chips may be multicore whether desired or not
•  What is the business case? Quantification is important.

Tech Transition

Questions?

DRAPER*/AIS/
U. Oxford
Traditional
penetration
testing; novel
formal methods
approach

HACMS Program Structure

2. Operating Systems 3. Control Systems 4. Research Integration 5. Red Team 1. Vehicle Experts

	
	

	
	
	 	 	

UPenn*/UCLA
Synthesize attack-
resilient control
systems	
	 	

HRL*/GM
American-Built
Automobile

Program Timeline:
•  BAA Release: Feb 23, 2012
•  Kick-Off: Aug 8-10, 2012
•  End of Phase 1: Jan 2014
•  End of Phase 2: July 2015
•  End of Phase 3: Jan 2017

Performers:
•  8 Primes (*)
•  22 Organizations Total

Boeing
Pilot-able Unmanned
Little Bird Helicopter

NICTA
Synthesize file systems,
device drivers, glue code;
Verified sel4 kernel;
Verified RTOS

Galois
Embedded DSLs;
Synthesize and verify
control system code

RC*/U. Minn
Compositional
verification;
Integrated workbench

SRI*/UIUC
EF-SMT solvers;
Synthesize monitors
and wrappers

SRI*
Synthetic sensors;
Synthesis for
controllers of hybrid
systems

Princeton*/Yale/
MIT
Build & verify in Coq
OS for vehicle control;
Verifying compiler for
concurrent code;
Program logics

SRI*
Lazy Composition;
Evidential Tool Bus &
Kernel of Truth;
Vehicle Integration

Kestrel*
Synthesize protocols:
refinement of high-
level spec to low-level
implementations

CMU*/Drexel/
SpiralGen/UIUC
Map high-level
spec into low-level
C code; Extend
Spiral for hybrid
systems

© Boeing

Source: American Car Company

Promising, but lots more to do!

Building High-Assurance Systems
•  Proof Engineering
•  Secure composition of high-assurance components
•  Architecture-aware proof support
•  Verified, reusable, exquisite artifacts

Formal Tools
•  Verified high-level languages
•  First-class domain-specific languages
•  Program/Proof synthesis
•  Improved tactics for theorem provers
•  Model checker/theorem prover integration

Specifications
•  Specification analysis
•  Specs for environmental assumptions
•  Specs for attacks

Control Systems
•  Attack-resistant control systems
•  Generated safety-envelope monitors
•  Models of “good” and “bad” behaviors
•  Certifying advanced control systems

Resources
•  Reasoning about time
•  Reasoning about memory usage
•  Verified protocols for distributed systems

Tech Transition Issues

