Trustworthy Software Systems

Greg Morrisett
Cutting Professor of Computer Science
School of Engineering & Applied Sciences
Harvard University

sht

Little about me...

e Research & Teaching
— Compilers, Languages, Formal Methods
— Software Security
— Harvard Center for Research on Computation & Society

e Number of security-oriented advisory boards
— Microsoft Trustworthy Computing Board (& MSR TAB)
— Intel-Berkeley SCRUB Lab
— Fortify (bought by HP)
— DARPA ISAT
— National Academy Study on “Science of Cybersecurity”

sht

All too familiar headlines...

September 26, 2014

SECURITY 19 million Windows PCs still vulnerable to

Devastating 'Hea I"tt Stuxnet zero-day

AN e s s s oo
disclosure. stu dy VAT SHELLSHOCK-LIKE WEAKNESS MAY AFFECT WINDOWS

In Cyberattack on Saudi Firm, USecurity researcher says many of his iOS ‘backdoor’
Back vulnerabilities are fixed in iOS 8 GM, but not all

The Stuxnet Attack Onmrans

Was 'Far More Dangerous' Thal g s sgels
Thought mcosn

b MICHAELBKELLEY £ % X\ ¥ &' The Internet Is Broken, and Shellshock Is Just the
i NOV.20,2013,1258PM 437528 11 Start of Our Woes

BY ROBERT MCMILLAN 09.29.14 | 6:30 AM | PERMALINK

sht

From DARPA'’s Cyber Analytic Framework...

sht

DﬁPA“ Attackers penetrate the architecture easily...

/2 DARPA | Home - Windows Internet Explorer
oa 5 v | htpifjwmw. darpa.mifindex bt vl [4][x e

. D trat = ... Hijacked
e m O n s ra e Defense Advanced Research Projects Agency We b pa g e

asymmetric ease of
exploitation of DoD

Processing Information

computer VErsus . D = n:IeCter(Ij‘] ﬁsf
efforts to defend. Derare - Fmerre Gt @ [Brem: Frewetiom- ocume

le

=3 Sz IO] ooz~ KD S8 b

News Release
w Defense Advanced Research Projects Agency
1701 Noc Pt Dive

Adpon, VA

DARPA Aims to Revolutionize Defense Manufacturing
Approach may compress systems delivery times by at

feast a factor of five

Agile and flexible design and manufacturing approaches are needed to meet
the demands of rapidly changing threats to national security, declining
defense budgets and the increasing complexity of systems. Current
approaches to the development of defense systems and vehicles have
proven inadequate for the timely delivery of much needed capability for the
warfighter. The Defense Advanced Research Projects Agency (DARPA)
launched a portfolio of programs aimed at dramatically compressing
development timelines for complex defense systems. DARPA's Adaptive
Vehicle Make (AVM) portfolio will fundamentally alter the way systems are
designed, built and verified, significantly improving the capacity to handle
complexity—which has been rapidly outpacing existing 1960s-vintage
approaches to managing it..

Full Release

DOMEDIATE RELEASE

Result
« Multiple remote

DARPA Aisns to Revolutionize Defense Manufacturing.
Approach may compres systems delivery times by at least facter of five

oy, Curvst

i Ageocy DARPA)

e way syt e

DARPA Industry Summit

s
e sproAches 19 g

Chief Executives from industry are invited to join DARPA staff for a 1-day —_—
COI I I rOI I I I Ses O u summit, either September 29 or 30, to discuss major challenges to our e
country's national security. Learn more and redister. S o e, e b
; ; g g
SECurity compliant an S s
SEARCH FOR DARPA PEOPLE AND PROGéAM B m
Find DA by Program or Interest Area y -
- ~, [— .
. b o, p
SETA

Chaie o gared werctions i o s, 1 Esemenc

patched HBSS*
computer within days:
« 2 remote exploits

25+ local privilege HBSS Workstation

escalation exploits Penetration Demonstration
« Undetected by defenses

Total Effort: 2 people, 3 days, Total cost = $18K
HBSS Costs: Millions of dollars a year for software and mm
E— licenses alone (not including man hours)

FAB complements META's b dss” dsis capubity wih » “foxniey-sle” mamufcouring sproach. The
e e

adding “We
s Aa FAB syl s salog

brond e of o

Theculiticn o op
prodace sy b vebcie Bt FANG hatye sofer pectve i amd. “We e lckin 0 expend
o coutiutcs . th deapcess by arders o magainde e cal s dermociazag
o that ot DARPA will drviop » colboratveinfiastctefo rowd:
o cmpley e META.

e e
movation’” wid Evcoeao

DARPA Ground truth...

80000 -
DoD Reported Incidents of Malicious
70000 Cyber Activity, 2000 — 2009
60000 -
4
s
2 50000 -
'S
c
= 40000 - A
5 _ 10.0
S 30000 - 80 S o
= e 5
60 @ &=
< 20000 - - 828z
1415 3651 4352 9919 = e © (Q Z
10000 -)0 &8
- 83
L
0 - 0.0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
2010 REPORT TO CONGRESS of the U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION

[1] INPUT reports 2004 — 2009

sht

« . .
DARPA \Ve are divergent with the threat...

10,000,000

8,000,000

6,000,000

4,000,000

Lines of Code

2,000,000

0
1985

DEC Seal Stalker

1990

Unified Threat
Management

Security software

Network Flight

Recorder
Milky Way Malware:
AN Snort 125 lines of code*
1995 2000 2005 2010

* Malware lines of code averaged over 9,000 samples

sht

Many Things Need to be Fixed

But one huge issue dominates right now:
* The code we depend upon is full of bugs.

User interfaces (and users)
Underlying Architecture

Underlying Protocols
Contiguration & Operation tools

0 oy

What's going wrong?

* Development processes are ineffective.
— Human code review doesn’t work.

* Certification processes are ineffective.
— Based on who authored, not the code itself.
e Current automated defenses are worse *

than ineffective.

— Based on syntax or provenance, not semantics.
— Introduce new classes of vulnerabilities.

sht

Dﬁ}”-\~ Ad(ditional security layers often create vulnerabilities...

Current vulnerability watchlist

1111

8

8 6 of the

§ vulnerabilities
g are in security
8 software

Vulnerability Title Fix Avail? | Date Added
XXXXXXX XXXXXXXXXXXX Local Privilege Escalation Vulnerability No 8/25/2010
XXOXXXXX XXXXXXXXXXXX Denial of Service Vulnerability Yes 8/24/2010
XXX XXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 8/20/2010
XXX XXXX XXXXXXXXXXXX Sanitization Bypass Weakness No 8/18/2010
XXX XXXXXXXXXXXX Security Bypass Vulnerability No 8/17/2010
XXX XXXXXXXXXXXX Multiple Security Vulnerabilities Yes 8/16/2010
XOOXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/16/2010
XXXXXXXXXXKX XXXXXXXXXXXX Use-After-Free Memory Corruption Vulnerability No 8/12/2010
XXX XXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 10/2010
XXXXXXXXXX XXXXXXXXXXXX Multiple Buffer Overflow Vulnerabilities No

XIOKXXKXXXX XXXXXXXXXXXX Stack Buffer Overflow Vulnerability Yes

XXXXXXXXXXXX XXXXXXXXXXXX Security-Bypass Vulnerability No

XXXXXXKXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities No

XOOXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 7/29/2010
XXXXXXX XXXXXXXXXXXX Remote Privilege Escalation Vulnerability No 7/28/2010
XXXKXXXX XXXXXXXXXXXX Cross Site Request Forgery Vulnerability No 7/26/2010
XXXXXXXXXXXX XXXXXXXXXXXX Multiple Denial Of Service Vulnerabilities No 7/22/2010

|

E Color Code Key: Vendor Replied — Fix in development | Awaiting Vendor Reply/Confirmation | Aw

aiting CC/S/A use validation

Market Failures

This pro
— Deve
— Deve

olem won't be solved by startups:
opers are stingy.

opers make money/fame by adding features, not

by doing security audits or fixes.

Contrast with attackers.
— They make money by doing careful audits...

sht

So how do we dig ourselves out of this mess?

sht

Ideal Architecture:

Policies capture behavior.

The checker automatically rules
out any code that will violate
the policy.

The checker is small, simple,
trustworthy, and automatic.

sht

Unfortunately

e Even simple policies are undecidable.
— e.g., Does the code have a buffer overflow?

— So any checker is either incomplete or unsound.
* Incomplete: rules out programs that meet the policy
* Unsound: allows a program that fails to meet the policy

* Analyzing machine code is hard.
— It's hard enough to analyze real source code for simple policies.
— Any machine-level analysis requires a big, complicated checker.
— So how can we trust that it's doing its job correctly?

So shift the burden.

sht

Key Observation

* Finding a proof is hard.

. Checkmg a |oroo1c can b|e |easy

sht

Proof-Carrying Code [Necula & Lee ‘97]

Code comes with a proof that it satisfies the policy.

The proof checker ensures that:
a) the proof is valid
b) the conclusion says “this code respects the policy”

sht

Good Properties of PCC

We can build a trustworthy proot checker.

« ~1K lines of code.

The coupling is tamper-proof.

- Change code: verifier will discover that the proof no longer talks
about the same code.

- Change proof: verifier will discover if it's no longer valid.
No secrets to have stolen.

Relative completeness.

- Any policy that can be formalized.
- Any code that provably respects the policy.

Enables integration
No longer matters who produced the code.

0 oy

PCC is No Silver Bullet

1

* How to get proofs?

— Policies of interest are hard to prove.

— Manual proof construction is order(s) of
magnitude harder to write than code.

e What policies should we enforce?
— How do you formalize “nothing bad”?

e Proofs are relative to models.

— How do we model the real world?

sht

How to get proofs?

Use high-level code & a certitying compiler.

Use automatic analysis.
Insert checks that make it easier to build proof.

Change the policy so it's easier to build proof.
Get the programmer to help.

CLEE NS

In reality, we have to do all of these...

sht

Rest of this Talk

Research investments that can help us build
proofs of safety & security for real code.

— Compiler verification

— Static analysis

— In-lined reference monitors

— Proof engineering & automation

— Domain-specitic languages & logics

0 oy

Reasoning About Machine Code

* Building proofs about machine code is hard.

* Prefer to construct proofs about a high-level
language.

e But then there is a gap...

— A bug in the compiler can lead to an exploit.

— Most browser vulnerabilities are due to bugs in Java or
Javascript implementations.

— See Yang et al.’s 2011 PLDI paper.

sht

Proven Correct Compilers

e CompCert [http://compcert.inria.fr]
— Optimizing C compiler
— Back-ends for x86, Arm, PPC
— Competitive with gcc —01

— Proof of correctness:
e C code has same I/O behavior of generated machine code.

e Means we can reason about the source code instead of the
machine code for most policies.

* See for instance, Andrew Appel’s program logic.

sht

Proof Engineering

Programmed
in Caml

Printing to asm
syntax

{ Coq) R
< Other

. . d
\ ()
Lomm el \ Janguages? ./ Typo Graph
e - reconstruction coloring

Parser,
typechecker, / .. N
simplifier (CIL) {_mini-ML) /
RN s
PowerPC
- —— = — —— -_—— —_—— [— —_— -,
assembly
- . . Layout of the Generation of
, ! »ngzi(%o:suucnqn, | Validation ‘ | Validation ‘ Lg:?:zzggg" activation Power PC
() , i nstruet record instructions Programmed and
e g S ! proved in Coq
_____ - % 7z |
s I
F Model \1‘ - v — Dataflow analyses Constant Common Register allocation by o rE;E os Machine Memory
_ checker ./ ,- static > propagation subexpressions graph coloring (Maps, Sets) arithmetic model
g)
\._ analyzer .’ I l | l

0 {00 e

A A SIS,

Still Many Challenges

¢ From -01 to -03; From WAT to JIT.
e Higher-level languages than C.

— c.t., core-ML compiler out of Cambridge.

* |ssues reasoning about multi-core programs.
— c.f., Sewell & Batty's work on C++11.

e Proof of correctness ~10x the size of code.
* Some policies not preserved by refinement.

0 oy

Proved Correct Compilers

Shift reasoning from machine to source code.

But we still need to produce a proof for the
source code...

sht

Static Analysis

e Static analysis tools are now viable for
detecting a wide class of common bugs in

source code.

— Prefast, Coverity, HP/Fortify, ...

— Based on foundational research in program analysis
from the 1980's-2000's.

 However, for legacy code:

— Generate too many “false” positives.
e For that matter, too many “true” positives as well.

— Today's commercial tools are (purposefully) unsound.

0 oy

An alternative:

In-lined Reference Monitors (IRMs)

* Formulate a safety policy.
— e.g., will not access the network.

* Insert run-time checks into the code to enforce the policy.

— Needed at security-critical events.

— But also must insert checks to protect the monitor!

— Makes it easy to prove that the compiler respects the policy.
— Importantly: avoids false positives of static analyses.

* However, we can use static analysis, to optimize checks.

— Only eliminate a check if you can prove it's safe to do so.
— So the role of analysis is purely for optimization.

0 oy

Some Example Policies

e SFI: Software Fault Isolation [Wahbe et al.]
e CFl: Control-Flow Isolation [Abadi et al.]
e XFI: Extended Flow Isolation [Erlingsson et al.]

e SafeCode [Dhurjati et al.]

These policies attempt to stop various forms of control-flow
hijacking and/or data corruption attacks in legacy C/C++
code.

sht

Policy Tradeofts

1. What vulnerabilities are mitigated?
2. How much legacy code do we break?

3. How much overhead do we incur?

4. How hard is it to get the implementation right?

sht

Some Example Policies

e SFI: Software Fault Isolation [Wahbe et al.]

— Forces code to execute in a sandbox.
— Low overhead (~5% on 32-bit x86), easy to enforce.
— But doesn't stop hijacking code or data within the sandbox.

e CFl: Control-Flow Isolation [Abadi et al.]

— Forces code to follow a control-flow graph.
— Not as lightweight as SFI (~10-20%7), harder to implement.
— Stops most (but not all) control hijacks such as ROP attacks; no data.

o XFI: Extended Flow Isolation [Erlingsson et al.]

— Extends CFl with stack-protection, even more expensive.

e SafeCode [Dhurjati et al.]

— Enforces a type-safety discipline (code + data).
— Overheads range from 20-150%, very hard to implement well.
— Stops all control hijacking, many data integrity attacks.

0 oy

Zooming in on one of these...

* Google wanted to use SFI to provide a sandbox
for their “Native Client” extension to the Chrome
Browser.

e \We built a checker that allows Google to verify
that a binary will respect the policy.
— Specialized to this policy: 80 lines of code!
— We proved that the checker is correct.
— [See Morrisett et al., PLDI 2012].

0 oy

Another IRM Example [Adve]

Based on the SAFEcode compiler [PLDI'06]:

e Compiles C, C++, Java, Haskell, etc.
e Enforces a much stronger policy than SFI.

e Works by instrumenting the LLVM intermediate
representation + some runtime support.

* Has been used to compile Linux 2.4.22 & NetBSD
— For Linux, prevented 4 of 5 known vulnerabilities
— ~20% - 50% overhead

0 oy

Certification for SAFEcode
' SAFEcode

Clang analysis &

.-> transforms

LLVM
optimizer

proof

checker

equiv
checker

sht

Summary Thus Far...

e Formulate safety policy as an in-lined reference
monitor.
— Automates policy enforcement; simplifies proof.

e Technologies from analysis used to cut overheads
of monitoring.

* Technologies from proof-preserving compilation
eliminate the need to trust the tools.

0 oy

Modeling

e A major challenge for both the Google and
SAFECode efforts was constructing formal

models of the underlying machines.
— x86 model has thousands of instructions.

— Building & validating such models is crucial for any
real-world application of formal methods.

e UK researchers have taken the lead here:
C++, x86, ARM, TCP, Javascript, ...

0 oy

Richer Policies...

* IRM’s make it possible to automate basic safety
properties.

e But for safety & security-critical software, we need
policies that cover confidentiality, availability, and
functional correctness.

— Much harder to get proofs.

— Example: SEL4 micro-kernel + proof of correctness
~20 person years of effort.

0 oy

Proof Automation

 Some of this is alleviated by advances in
automatic theorem proving technology.

— SAT solvers; SMT provers.
— Both have seen dramatic improvements.
— Still have many hard challenges here.

e Much more is alleviated by using domain-
specific languages, logic, & decision
procedures.

0 oy

Examples: Confidentiality

o Jif, LIO:
— Information flow tracking through types

— Ensure information from private fields in data do not
flow to public channels.

— Dually, public data cannot influence integrity.

e EFasyCrypt, FCF:

— Domain-specific languages & logics for reasoning
about cryptographic schemes (e.g., TLS.)

— Connect cryptographer-level proofs to actual code.

0 oy

Wrapping It up:

® Proof-carrying code (PCC) enables trust.
— Doesn’t matter who wrote the code.
— Can verify with small trusted computing base.
— Important for scaling software, where components are
brought in from 3 parties, open source, etc.
* Certifying compilers help produce PCC:
— prove properties at the source level.
— no need to trust compiler or reveal the source.

0 oy

Getting Proofs:

e Today:
— Safety policies enforced by in-lined reference monitors.
— Stop a wide range of common attacks.

e Tomorrow:

— New languages let us capture a range of policies:
integrity, confidentiality, availability, correctness.

— New analysis techniques & decision procedures help
automate proof construction.

sht

Thanks!

Questions? Comments?

sht

