
Trustworthy Software Systems

Greg Morrisett
Cutting Professor of Computer Science

School of Engineering & Applied Sciences
Harvard University

Little about me…

•  Research & Teaching
–  Compilers, Languages, Formal Methods
–  Software Security
–  Harvard Center for Research on Computation & Society

•  Number of security-oriented advisory boards
–  Microsoft Trustworthy Computing Board (& MSR TAB)
–  Intel-Berkeley SCRUB Lab
–  Fortify (bought by HP)
–  DARPA ISAT
–  National Academy Study on “Science of Cybersecurity”

All too familiar headlines…

From DARPA’s Cyber Analytic Framework…

Goal
•  Demonstrate

asymmetric ease of
exploitation of DoD
computer versus
efforts to defend.

Result
•  Multiple remote

compromises of fully
security compliant and
patched HBSS‡
computer within days:

•  2 remote exploits
•  25+ local privilege

escalation exploits
•  Undetected by defenses

Attackers penetrate the architecture easily…

HBSS Workstation
Penetration Demonstration

Total Effort: 2 people, 3 days, Total cost = $18K

‡ = Host Based Security System (HBSS)

Hijacked
web page

Infected .pdf
document

HBSS Costs: Millions of dollars a year for software and
licenses alone (not including man hours)

Approved for public release; distribution is unlimited

5

Ground truth…

[1] INPUT reports 2004 – 2009

DoD Reported Incidents of Malicious
Cyber Activity, 2000 – 2009

Fe
de

ra
l D

ef
en

si
ve

Cy

be
r

Sp
en

di
ng

($

B)
 [

1]

10.0

8.0

6.0

4.0

2.0

0.0

2010 REPORT TO CONGRESS of the U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION

Approved for public release; distribution is unlimited

6

We are divergent with the threat…

Malware:
125 lines of code*

Li
ne

s
of

 C
od

e

1985 1990 1995 2000 2005 2010

x
x x x

DEC Seal Stalker

Milky Way

Snort

Network Flight
Recorder

Unified Threat
Management 10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

0

Security software

* Malware lines of code averaged over 9,000 samples

x

x

Approved for public release; distribution is unlimited

7

Many Things Need to be Fixed

• User interfaces (and users)
• Underlying Architecture
• Underlying Protocols
• Configuration & Operation tools

But one huge issue dominates right now:
•  The code we depend upon is full of bugs.

What’s going wrong?

• Development processes are ineffective.
–  Human code review doesn’t work.

• Certification processes are ineffective.
–  Based on who authored, not the code itself.

• Current automated defenses are worse
than ineffective.
–  Based on syntax or provenance, not semantics.
–  Introduce new classes of vulnerabilities.

Vulnerability Title Fix Avail? Date Added

XXXXXXXXXXXX XXXXXXXXXXXX Local Privilege Escalation Vulnerability No 8/25/2010

XXXXXXXXXXXX XXXXXXXXXXXX Denial of Service Vulnerability Yes 8/24/2010

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 8/20/2010

XXXXXXXXXXXX XXXXXXXXXXXX Sanitization Bypass Weakness No 8/18/2010

XXXXXXXXXXXX XXXXXXXXXXXX Security Bypass Vulnerability No 8/17/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities Yes 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Use-After-Free Memory Corruption Vulnerability No 8/12/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/10/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Buffer Overflow Vulnerabilities No 8/10/2010

XXXXXXXXXXXX XXXXXXXXXXXX Stack Buffer Overflow Vulnerability Yes 8/09/2010

XXXXXXXXXXXX XXXXXXXXXXXX Security-Bypass Vulnerability No 8/06/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities No 8/05/2010

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 7/29/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Privilege Escalation Vulnerability No 7/28/2010

XXXXXXXXXXXX XXXXXXXXXXXX Cross Site Request Forgery Vulnerability No 7/26/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Denial Of Service Vulnerabilities No 7/22/2010

Additional security layers often create vulnerabilities…

Awaiting Vendor Reply/Confirmation Awaiting CC/S/A use validation Vendor Replied – Fix in development Color Code Key:

6 of the
vulnerabilities
are in security

software

Current vulnerability watchlist

Approved for public release; distribution is unlimited

10

Market Failures

This problem won’t be solved by startups:
–  Developers are stingy.
–  Developers make money/fame by adding features, not

by doing security audits or fixes.

Contrast with attackers.
– They make money by doing careful audits…

So how do we dig ourselves out of this mess?

13

Ideal Architecture:

Policy
Checker policy

untrusted
code

Policies capture behavior.

The checker automatically rules
out any code that will violate
the policy.

The checker is small, simple,
trustworthy, and automatic.

14

Unfortunately

•  Even simple policies are undecidable.
–  e.g., Does the code have a buffer overflow?
–  So any checker is either incomplete or unsound.

•  Incomplete: rules out programs that meet the policy
•  Unsound: allows a program that fails to meet the policy

•  Analyzing machine code is hard.
–  It’s hard enough to analyze real source code for simple policies.
–  Any machine-level analysis requires a big, complicated checker.
–  So how can we trust that it’s doing its job correctly?

So shift the burden.
!

15

Key Observation

•  Finding a proof is hard.
•  Checking a proof can be easy.

16

Proof-Carrying Code [Necula & Lee ‘97]

Proof
Checker policy

untrusted
code

Code comes with a proof that it satisfies the policy.

The proof checker ensures that:
a)  the proof is valid
b)  the conclusion says “this code respects the policy”

proof

17

Good Properties of PCC

•  We can build a trustworthy proof checker.
•  ~1K lines of code.

•  The coupling is tamper-proof.
•  Change code: verifier will discover that the proof no longer talks

about the same code.
•  Change proof: verifier will discover if it’s no longer valid.
•  No secrets to have stolen.

•  Relative completeness.
•  Any policy that can be formalized.
•  Any code that provably respects the policy.

•  Enables integration
•  No longer matters who produced the code.

18

PCC is No Silver Bullet

•  How to get proofs?
–  Policies of interest are hard to prove.
–  Manual proof construction is order(s) of

magnitude harder to write than code.

•  What policies should we enforce?
–  How do you formalize “nothing bad”?

•  Proofs are relative to models.
–  How do we model the real world?

19

How to get proofs?

1.  Use high-level code & a certifying compiler.
2.  Use automatic analysis.
3.  Insert checks that make it easier to build proof.
4.  Change the policy so it’s easier to build proof.
5.  Get the programmer to help.

In reality, we have to do all of these…

Rest of this Talk

Research investments that can help us build
proofs of safety & security for real code.

– Compiler verification
– Static analysis
–  In-lined reference monitors
– Proof engineering & automation
– Domain-specific languages & logics

Reasoning About Machine Code

•  Building proofs about machine code is hard.

•  Prefer to construct proofs about a high-level
language.

•  But then there is a gap…
–  A bug in the compiler can lead to an exploit.
–  Most browser vulnerabilities are due to bugs in Java or

Javascript implementations.
–  See Yang et al.’s 2011 PLDI paper.

Proven Correct Compilers

• CompCert [http://compcert.inria.fr]

– Optimizing C compiler
– Back-ends for x86, Arm, PPC
– Competitive with gcc –O1!
– Proof of correctness:

•  C code has same I/O behavior of generated machine code.
•  Means we can reason about the source code instead of the

machine code for most policies.
•  See for instance, Andrew Appel’s program logic.

Proof Engineering

Still Many Challenges

•  From -01 to -03; From WAT to JIT.
• Higher-level languages than C.

–  c.f., core-ML compiler out of Cambridge.

•  Issues reasoning about multi-core programs.
–  c.f., Sewell & Batty’s work on C++11.

•  Proof of correctness ~10x the size of code.
•  Some policies not preserved by refinement.

Proved Correct Compilers

Shift reasoning from machine to source code.

But we still need to produce a proof for the
source code…

Static Analysis

•  Static analysis tools are now viable for
detecting a wide class of common bugs in
source code.
–  Prefast, Coverity, HP/Fortify, …
–  Based on foundational research in program analysis

from the 1980’s-2000’s.

• However, for legacy code:
–  Generate too many “false” positives.

•  For that matter, too many “true” positives as well.
–  Today’s commercial tools are (purposefully) unsound.

An alternative:

In-lined Reference Monitors (IRMs)
•  Formulate a safety policy.

–  e.g., will not access the network.

•  Insert run-time checks into the code to enforce the policy.
–  Needed at security-critical events.
–  But also must insert checks to protect the monitor!
–  Makes it easy to prove that the compiler respects the policy.
–  Importantly: avoids false positives of static analyses.

•  However, we can use static analysis, to optimize checks.
–  Only eliminate a check if you can prove it’s safe to do so.
–  So the role of analysis is purely for optimization.

Some Example Policies
•  SFI: Software Fault Isolation [Wahbe et al.]

•  CFI: Control-Flow Isolation [Abadi et al.]

•  XFI: Extended Flow Isolation [Erlingsson et al.]

•  SafeCode [Dhurjati et al.]

These policies attempt to stop various forms of control-flow
hijacking and/or data corruption attacks in legacy C/C++
code.

Policy Tradeoffs

1.  What vulnerabilities are mitigated?
2.  How much legacy code do we break?
3.  How much overhead do we incur?
4.  How hard is it to get the implementation right?

Some Example Policies
•  SFI: Software Fault Isolation [Wahbe et al.]

–  Forces code to execute in a sandbox.
–  Low overhead (~5% on 32-bit x86), easy to enforce.
–  But doesn’t stop hijacking code or data within the sandbox.

•  CFI: Control-Flow Isolation [Abadi et al.]
–  Forces code to follow a control-flow graph.
–  Not as lightweight as SFI (~10-20%?), harder to implement.
–  Stops most (but not all) control hijacks such as ROP attacks; no data.

•  XFI: Extended Flow Isolation [Erlingsson et al.]
–  Extends CFI with stack-protection, even more expensive.

•  SafeCode [Dhurjati et al.]
–  Enforces a type-safety discipline (code + data).
–  Overheads range from 20-150%, very hard to implement well.
–  Stops all control hijacking, many data integrity attacks.

Zooming in on one of these…

•  Google wanted to use SFI to provide a sandbox
for their “Native Client” extension to the Chrome
Browser.

•  We built a checker that allows Google to verify
that a binary will respect the policy.
–  Specialized to this policy: 80 lines of code!
–  We proved that the checker is correct.
–  [See Morrisett et al., PLDI 2012].

Another IRM Example [Adve]

Based on the SAFEcode compiler [PLDI’06]:
•  Compiles C, C++, Java, Haskell, etc.
•  Enforces a much stronger policy than SFI.
•  Works by instrumenting the LLVM intermediate

representation + some runtime support.
•  Has been used to compile Linux 2.4.22 & NetBSD

–  For Linux, prevented 4 of 5 known vulnerabilities
–  ~20% - 50% overhead

Certification for SAFEcode

C/C++ Clang
SAFEcode
analysis &
transforms

LLVM
IR

LLVM
IR

Proof
witness

proof
checker

LLVM
IR

LLVM
optimizer

equiv
checker

LLVM code
generator

LLVM
IR

Binary

Summary Thus Far…

•  Formulate safety policy as an in-lined reference

monitor.
–  Automates policy enforcement; simplifies proof.

•  Technologies from analysis used to cut overheads
of monitoring.

•  Technologies from proof-preserving compilation
eliminate the need to trust the tools.

Modeling

•  A major challenge for both the Google and
SAFECode efforts was constructing formal
models of the underlying machines.
–  x86 model has thousands of instructions.
–  Building & validating such models is crucial for any

real-world application of formal methods.

•  UK researchers have taken the lead here:
C++, x86, ARM, TCP, Javascript, …

Richer Policies…

•  IRM’s make it possible to automate basic safety
properties.

•  But for safety & security-critical software, we need
policies that cover confidentiality, availability, and
functional correctness.
–  Much harder to get proofs.
–  Example: SEL4 micro-kernel + proof of correctness

~20 person years of effort.

Proof Automation

•  Some of this is alleviated by advances in
automatic theorem proving technology.
– SAT solvers; SMT provers.
– Both have seen dramatic improvements.
– Still have many hard challenges here.

• Much more is alleviated by using domain-
specific languages, logic, & decision
procedures.

Examples: Confidentiality

•  Jif, LIO:
–  Information flow tracking through types
–  Ensure information from private fields in data do not

flow to public channels.
–  Dually, public data cannot influence integrity.

•  EasyCrypt, FCF:
–  Domain-specific languages & logics for reasoning

about cryptographic schemes (e.g., TLS.)
–  Connect cryptographer-level proofs to actual code.

39

Wrapping it up:

•  Proof-carrying code (PCC) enables trust.
–  Doesn’t matter who wrote the code.
–  Can verify with small trusted computing base.
–  Important for scaling software, where components are

brought in from 3rd parties, open source, etc.

•  Certifying compilers help produce PCC:
–  prove properties at the source level.
–  no need to trust compiler or reveal the source.

40

Getting Proofs:

•  Today:
–  Safety policies enforced by in-lined reference monitors.
–  Stop a wide range of common attacks.

•  Tomorrow:
–  New languages let us capture a range of policies:

integrity, confidentiality, availability, correctness.
–  New analysis techniques & decision procedures help

automate proof construction.

Thanks!

Questions? Comments?

