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• Pascal/Ada/C/SML/Ocaml/Haskell

• ACL2/Coq/Agda

• Latex

• Powerpoint

• Someone else’s Powerpoint

Languages over a career

2



• Already ubiquitous:  e.g., SSL/TLS

• Offer great hope:  e.g., homomorphic

encryption

• Perhaps most importantly:

• Offer a rigorous way to think about, model, and 

verify protocols for important security 

properties.

• A true “science” basis for security?

Cryptographic techniques
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“In theory there is no difference between theory 

and practice;  in practice there is.”

- Jan L.A. van de Snepscheut

Yet…
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For instance
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The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability 

in the popular OpenSSL cryptographic software 

library. This weakness allows stealing the 

information protected, under normal conditions, 

by the SSL/TLS encryption used to secure the 

Internet.

"Catastrophic" is the right word. On the scale of 1 to 10, this is an 11.

- Bruce Schneier



Open source libraries, such as OpenSSL, power 

the internet.

But frankly, we cannot rely upon the open 

source community to do an adequate job of 

auditing security-critical code.  

Auditing
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• Flawed schemes

• Needham-Schroeder-(Lowe)
• Assumed secure for 17 years before broken.

• Dual-EC-DRBG
• Flaw suspected for 6 years, ignored due to culture of trust.

• Advanced Privacy Protection (APP) scheme
• Proved secure, proof independently verified, still flawed.

• The situation is getting worse

• Bellare & Rogaway (2006):  “Our field may be approaching a crisis of 
rigor.”

• Halevi (2005):  “…we generate more proofs than we carefully verify.”

In addition to coding errors:
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• Mechanized proofs of security for cryptographic schemes.

• Instead of humans, a machine takes care of auditing proofs.

• Forces community to standardize definitions.

• Coupled with formal verification of code.

• Connect the actual (source) code to the cryptographic algorithms.

• And fully abstract, verified compilers.

• Verified compilation ensures machine code preserves behaviors.

• Full abstraction ensures possible attacks at the target level are 
reflected in the source.

One Way Forward
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• Goal:  no need to trust the proof of security

• Still need to inspect definitions and assumptions.

• (Even this is fraught with peril.)

• Two basic models:

• Symbolic:  functions/values are opaque, adversary 
capability is algebraic, proof by underlying logic.

• Computational:  considers probabilities, adversary is 
computationally bounded, proof by reduction.

Mechanizing Cryptography
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• 2008:  CertiCrypt (Barthe et al.)

• First fully-general proof framework for crypto

• Library in Coq; deep embedding

• 2011:  EasyCrypt (Barthe et al.)

• As expressive as CertiCrypt, but much easier to 

use

• Standalone system using Why3 as backend

Some very influential computational work:
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• External team attempted to use EasyCrypt
• MIT Lincoln Lab, US Naval R. Lab, U. of 

Maryland
• Mix of PL and crypto experts
• Goal:  security of a private information retrieval 

protocol

• Outcome:  partial success

• Most lemmas could be proved.
• Found minor flaws in scheme.
• But unable to prove certain results.

EasyCrypt case study (circa 2012)
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The Foundational Cryptography Framework
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1. A formal language, embedded in Coq, for specifying 

cryptographic protocols, games, and other 

specifications.

2. The language comes equipped with both a simple 

operational model, as well as a denotational one.

3. From the model, we derive a program logic that 

allows one to formally prove (probabilistic) 

correctness and security. 

4. Set of libraries for common cryptographic 

constructions and a set of tactics that help automate 

some of the proofs.  

Adam Petcher

(POST 2015)



Probabilistic Programs
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We re-use Coq’s functional language, Gallina and add

a (discrete) probability monad:  



A one-time-pad encryption for a message of n bits.

Definition OTP(n:nat)(msg:Bvector n) := 

p <-$ {0, 1}ˆn ; 

ret (p xor msg). 

So for example:
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• Security definitions given as “games”

• Adversary should not “win” the game

• Alternatively: two games that adversary cannot 
distinguish

• Advantage: the probability that the adversary wins 
the game

• Also used to describe (assumed) hard problems

More Generally
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Example:  Encryption (IND-CPA)
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Adversary Game

Generate random 

encryption key

Adversary wins

if b=b’

Not shown:  adversary can request ciphertext for any plaintext



We often need to show that a given program has 

the same distribution as another program.

Or more generally, that the probability of some 

certain bad events is bounded when moving 

from one program to another.  

Reasoning via Game Hopping
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Denotational Semantics: Probability Mass 

Fn.
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Lots of equational properties
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Probabilistic relational post-condition logic

(PRPL):

Program Logic
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Some Properties of the Logic
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• Lots of standard constructions for encryption, 
authentication, etc.

• See Petcher’s 2015 Harvard PhD thesis

• Case Study:  Searchable Symmetric Encryption

• Based on work of Cash et al. (2013)

• Petcher & Morrisett, Computer Security Foundations 
2015

• Case Study:  Security of OpenSSL HMAC code

• Beringer et al., USENIX Security 2015

What’s It Like to Use the Logic?
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Two parties: client and server

Database: list of keyword, value pairs

Client

• Knows database and list of queries

• Creates encrypted database and queries to give to server

Server

• Executes queries and gives encrypted results to client

• Learns very little about database and queries

Searchable Symmetric Encryption
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Three procedures

• TSetSetup : Database -> (TSet * SecretKey)

• TSetGetTag : SecretKey -> Keyword -> Tag

• TSetRetrieve: TSet -> Tag -> list Value

Security: Adversary cannot distinguish T-Set and 
tags from those produced by simulator

Correctness: Adversary cannot cause incorrect 
answers

Key Component:  Tuple Sets
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T-Set is almost an SSE Scheme for single-keyword 
search

• Reveals results of query

Solution: Store ciphertexts in T-Set

• Encryption key is derived from keyword via PRF

• Proof requires secure and correct T-Set

Relatively simple proof

• ~ 1100 lines of Coq code

• 8 intermediate games

SSE from Tuple Sets
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Cash et al. provide a T-Set scheme

Based on a fixed-size 2D table

• Row is determined by hash

• Location in row chosen at random

Complications

• A row can become full (setup restarts)

• Sampling without replacement

• Nested loops, loop manipulations

The Hard Part:  Tuple-Sets
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Security/correctness given one implies 

security/correctness given many

Encryption/PRF with many keys/oracles

Simplify T-Set proofs

• Consider simplified “single-trial” T-Set scheme 

• Conclude facts about full T-Set scheme

Hybrid Arguments
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Single-Trial T-Set Security Proof

28



Single-Trial T-Set Correctness Proof
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Among largest mechanized crypto proofs to date

• 58 intermediate games in 9 reductions

• Over 14,000 lines of Coq code

• 1,300 lines of definition and intermediate games

• Unlike in traditional crypto, these intermediate 

games (S1-S18, C1-C19) do not have to be 

inspected.

SSE Proof Size
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• It’s possible to automatically extract an 

OCaml implementation from the Coq 

definitions.

• But we have to trust extraction & OCaml

compiler

• CertiCoq:  a verified compiler for Coq

• Joint project between Princeton, Cornell, Inria

• Very much a work in progress

Compilation
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FCF can be combined with other Coq libraries.

Verified Software Toolchain (VST) by Appel:

• Allows to prove correctness of C code.

• Leroy’s CompCert compiler produces assembly-

level refinement.

Reasoning about existing code
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Correct implementation of HMAC in C

• Developed by Appel and Beringer

• Equivalent to functional specification

HMAC is a PRF

• Developed by Petcher

• Assuming hash function has certain properties

Functional spec equivalent to crypto model

• Developed by Ye

Secure HMAC Code
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• For FCF, complexity arguments are done by 
hand.

• Need much more proof automation.

• The work on HMAC did not consider side 
channels.

• But see recent F* work out of INRIA on ECs. 

• There’s a serious issue around getting 
cryptographers to read and understand the 
definitions to show we are proving the right 
things.

• Freedom to explore!

What next? 
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• CertiCrypt, EasyCrypt (Barthe et al.)

• CryptoVerif (Blanchet)

• F* (Fournet et al.)

• Nowak

• Verypto (Berg)

• Crypto-agda

• Probabilistic Protocol Composition Logic (Datta et al.)

• Backes

• …

Much Related Work
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Mechanizing crypto proofs is a way to support 
open source development without needing the 
same (misplaced) trust that we have today.

The tools are rapidly coming together to reason 
about computational security of real code 
executing on real systems.  

To Summarize
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Thanks!
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