
A rigorous approach to
consistency in cloud databases

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Data is replicated and partitioned
across multiple nodes

Data centres across the world

Disaster-tolerance, minimising latency

Data centres across the world

Disaster-tolerance, minimising latency

Data centres across the world

Disaster-tolerance, minimising latency

With thousands of machines inside

Load-balancing, fault-tolerance

Replicas on mobile devices

Offline use

≈

• Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

≈

• Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

• Requires synchronisation: contact other
replicas when processing a request

• Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]

≈

• Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]

≈

• Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]

≈

• Increased latency and resource consumption

Relaxing synchronisation

Process an update locally, propagate effects to
other replicas later

deposit(100)

Relaxing synchronisation

Process an update locally, propagate effects to
other replicas later

deposit(100)

Better scalability & availability+

- Weakens consistency: deposit seen with a delay

Anomalies ~ relaxed memory

deposit(100)

notify(done)

Anomalies ~ relaxed memory

deposit(100)

notify(done)

getNotif() : done

balance() : 0

deposit(100)

notify(done)

getNotif() : done

balance() : 0

Causal dependency

Anomalies ~ relaxed memory

• A spectrum of consistency models:
eventual consistency, causal consistency, ...

• Programming constructs for mitigating weakness

• Is a given consistency model good for
maintaining correctness in a given application?

• How should programmers use the models
and programming features correctly?

Problem

No guidelines, patterns, static analysis tools,
informal or inadequate specifications

Does it weaken consistency too much, too little,
just right?

• Is a given consistency model good for
maintaining correctness in a given application?

• How should programmers use the models
and programming features correctly?

No guidelines, patterns, static analysis tools,
informal or inadequate specifications

Does it weaken consistency too much, too little,
just right?

Problem

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state”

• Is a given consistency model good for
maintaining correctness in a given application?

• How should programmers use the models
and programming features correctly?

No guidelines, patterns, static analysis tools,
informal or inadequate specifications

Does it weaken consistency too much, too little,
just right?

Problem

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state”

• Is a given consistency model good for
maintaining correctness in a given application?

• How should programmers use the models
and programming features correctly?

No guidelines, patterns, static analysis tools,
informal or inadequate specifications

Does it weaken consistency too much, too little,
just right?

Problem

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state”

Need a rigorous approach: programming models
and static analysis tools that allow relaxing
synchronisation without compromising correctness

Research agenda

Formal semantics
specification

Research agenda

Formal semantics
specification

Reasoning about DB
implementations

Research agenda

Reasoning about
applications

Formal semantics
specification

Reasoning about DB
implementations

Research agenda

Reasoning about
applications

Formal semantics
specification

Reasoning about DB
implementations

Research agenda

Improve DB programming models and implementations

⬇

Reasoning about
applications

Formal semantics
specification

Reasoning about DB
implementations

Research agenda

Improve DB programming models and implementations

⬇Joint work with Hongseok Yang (Oxford), Carla Ferreira
(U Nova Lisboa), Mahsa Najafzadeh, Marc Shapiro (INRIA)

balance = 100 balance = 100

balance ≥ 0

Synchronisation can be necessary

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance ≥ 0

balance = 0

Synchronisation can be necessary

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance ≥ 0

balance = 0

Synchronisation can be necessary

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance ≥ 0

balance = 0

deposit(100)

Synchronisation can be necessary

Consistency choices

• Choose consistency level for each operation:

‣ Withdrawals strongly consistent

‣ Deposits eventually consistent

• Pay for stronger semantics with latency,
possible unavailability and money

• Hard to figure out the minimum consistency
necessary to maintain correctness -
proof rule and tool

Consistency model

Generic model - not implemented, but can
encode many existing models that are

• Causal consistency as a baseline:
observe an update ➜ observe the updates
it depends on

• A construct for strengthening consistency
on demand

σ

⟦op⟧val

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

Effector

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

Effector: ⟦op⟧eff ∈ State ➞ (State ➞ State)

Replica states: σ ∈ State

op

Return value: ⟦op⟧val ∈ State ➞ Value

Operation semantics

Effector

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦balance()⟧eff(σ) = λσ. σ

State = Z

op

⟦balance()⟧val(σ) = σ

Operation semantics

σ

σʹ

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Operation semantics

σ

50

⟦op⟧eff(σ)(σʹ)

⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Operation semantics

σ

50

150

⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ) = λσʹ. (σʹ + 100)

op

Operation semantics

• Effectors have to commute:

• Eventual consistency: replicas receiving the
same messages in different orders end up in
the same state

• Replicated data types [Shapiro+ 2011]:
ready-made commutative implementations

∀op1, op2, σ1, σ2. ⟦op1⟧eff(σ1) ; ⟦op2⟧eff(σ2) =
⟦op2⟧eff(σ2) ; ⟦op1⟧eff(σ1)

Ensuring eventual consistency

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

σ
⟦op⟧eff(σ)

⟦op⟧val

op

Operation semantics

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

σʹ

⟦op⟧eff(σ)(σʹ)

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0balance = 0

λσʹ. σʹ - 100

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

balance = 100

withdraw(100) : ✔

balance = 100

withdraw(100) : ✔

balance = 0

balance = -100

balance = 0

λσʹ. σʹ - 100

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Example - mutual exclusion lock:
Token = {τ}; τ ⋈ τ

Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Example - mutual exclusion lock:
Token = {τ}; τ ⋈ τ

Each operation associated with a set of tokens:
⟦op⟧tok ∈ State ➞ P(Token)

balance = 100

withdraw(100) : ✔

balance = 100

{τ}

τ ⋈ τ

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

withdraw(100) : ✔

balance = 100

Anything I don’t
know about?

 withdraw(100) : ?

{τ}

τ ⋈ τ

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100 balance = 100

withdraw(100) : ✔

balance = 0

 withdraw(100) : ?

τ ⋈ τ

{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

 withdraw(100) : ✘

balance = 0

balance = 100

withdraw(100) : ✔

τ ⋈ τ

{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

 withdraw(100) : ✘

balance = 0

deposit(100)
∅

balance = 100

withdraw(100) : ✔

τ ⋈ τ

No synchronisation
{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

balance = 100

 withdraw(100) : ✘

balance = 0

deposit(100)
∅

balance = 100

withdraw(100) : ✔

τ ⋈ τ

No synchronisation
{τ}

{τ}

Operations associated with conflicting tokens
cannot be unaware of each other

Do we always have I = (balance ≥ 0)?
Rely-guarantee-based proof rule

Check it’s preserved after
executing op

σ ∈ I
op

Assume invariant holds

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

Effect applied in a different state!

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

 if σ ≥ 100 then (λσʹ. σʹ - 100) else (λσʹ. σʹ)
⟦withdraw(100)⟧eff(σ) =

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ

⟦op⟧eff(σ)(σʹ) ∈ I ?

⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

P(σʹ)?

{bal ≥ 0 ∧ bal ≥ 100} bal := bal-100 {bal ≥ 0}

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

σʹ
⟦op⟧eff(σ)

σ ∈ I
op

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧eff(σ)(σʹ) ∈ I ✔

P(σʹ)?

2. Precondition stability: P will hold when f is
applied at any replica

1. Effector safety: f preserves I when executed
in any state satisfying P: {I ∧ P} f {I}

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧tok(σ) = if P(σ) then T else if...

P is preserved by any effector fʹ of any operation
that is not associated with a token conflicting
with T: {P} fʹ {P}

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧tok(σ) = if P(σ) then T else if...

P is preserved by any effector fʹ of any operation
that is not associated with a token conflicting
with T: {P} fʹ {P}

⟦withdraw(100)⟧tok(σ) = {τ}

⟦deposit(100)⟧tok(σ) = ∅

τ ⋈ τ

Check stability of withdraw’s precondition
against deposits:

{bal ≥ 100} bal := bal+100 {bal ≥ 100}

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧tok(σ) = if P(σ) then T else if...

⟦withdraw(100)⟧tok(σ) = {τ}

⟦deposit(100)⟧tok(σ) = ∅

τ ⋈ τ

Check stability of withdraw’s precondition
against deposits:

{bal ≥ 100} bal := bal+100 {bal ≥ 100}

P is preserved by any effector fʹ of any operation
that is not associated with a token conflicting
with T: {P} fʹ {P}

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧tok(σ) = if P(σ) then T else if...

⟦withdraw(100)⟧tok(σ) = {τ}

⟦deposit(100)⟧tok(σ) = ∅

τ ⋈ τ

Check stability of withdraw’s precondition
against deposits:

{bal ≥ 100} bal := bal+100 {bal ≥ 100}

P is preserved by any effector fʹ of any operation
that is not associated with a token conflicting
with T: {P} fʹ {P}

⟦op⟧eff(σ) = if P(σ) then f(σ) else if...

⟦op⟧tok(σ) = if P(σ) then T else if...

⟦withdraw(100)⟧tok(σ) = {τ}

⟦deposit(100)⟧tok(σ) = ∅

τ ⋈ τ

Check stability of withdraw’s precondition
against deposits:

{bal ≥ 100} bal := bal+100 {bal ≥ 100}

P is preserved by any effector fʹ of any operation
that is not associated with a token conflicting
with T: {P} fʹ {P}

Prototype tool

• Automates the proof rule

• Discharges verification conditions using SMT

• Case studies:

‣ fragments of web applications

‣ currently applying to a distributed file
system

Conclusion

• Weak consistency poses challenges for
programmability

• But pay-off often worth it: availability,
cost-effectiveness

• Verification methods enable weakening
consistency without compromising
correctness

