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Data is replicated and partitioned 
across multiple nodes
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With thousands of machines inside

Load-balancing, fault-tolerance



Replicas on mobile devices

Offline use
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• Strong consistency model: the system behaves as 
if it processes requests serially on a centralised 
database - linearizability, serializability

• Requires synchronisation: contact other 
replicas when processing a request
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• Increased latency and resource consumption
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Process an update locally, propagate effects to 
other replicas later

deposit(100)

Better scalability & availability+

- Weakens consistency: deposit seen with a delay
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deposit(100)

notify(done)

getNotif() : done

balance() : 0

Causal dependency

Anomalies ~ relaxed memory





• A spectrum of consistency models:            
eventual consistency, causal consistency, ...

• Programming constructs for mitigating weakness
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Need a rigorous approach: programming models 
and static analysis tools that allow relaxing 
synchronisation without compromising correctness
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Reasoning about 
applications

Formal semantics 
specification

Reasoning about DB 
implementations

Research agenda

Improve DB programming models and implementations

⬇Joint work with Hongseok Yang (Oxford), Carla Ferreira 
(U Nova Lisboa), Mahsa Najafzadeh, Marc Shapiro (INRIA)
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Synchronisation can be necessary



Consistency choices

• Choose consistency level for each operation:

‣ Withdrawals strongly consistent

‣ Deposits eventually consistent

• Pay for stronger semantics with latency, 
possible unavailability and money

• Hard to figure out the minimum consistency 
necessary to maintain correctness -       
proof rule and tool



Consistency model

Generic model - not implemented, but can 
encode many existing models that are

• Causal consistency as a baseline:      
observe an update ➜ observe the updates 
it depends on

• A construct for strengthening consistency 
on demand
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⟦op⟧eff(σ)
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⟦op⟧eff(σ)
⟦op⟧val

⟦deposit(100)⟧eff(σ)  =  λσʹ. (σʹ + 100)

op

Operation semantics
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⟦op⟧eff(σ)
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• Effectors have to commute:

• Eventual consistency: replicas receiving the 
same messages in different orders end up in 
the same state

• Replicated data types [Shapiro+ 2011]: 
ready-made commutative implementations

∀op1, op2, σ1, σ2.  ⟦op1⟧eff(σ1) ; ⟦op2⟧eff(σ2) = 
⟦op2⟧eff(σ2) ; ⟦op1⟧eff(σ1)

Ensuring eventual consistency
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Strengthening consistency

• Token = {τ1, τ2, ...}

• Symmetric conflict relation ⋈ ⊆ Token × Token

Token system ≈ locks on steroids:

Example - mutual exclusion lock:  
Token = {τ};  τ ⋈ τ

Each operation associated with a set of tokens:              
⟦op⟧tok ∈ State ➞ P(Token)
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  withdraw(100) : ✘

balance = 0

deposit(100)
∅

balance = 100

withdraw(100) : ✔

τ ⋈ τ

No synchronisation
{τ}

{τ}

Operations associated with conflicting tokens 
cannot be unaware of each other

Do we always have I = (balance ≥ 0)?
Rely-guarantee-based proof rule



Check it’s preserved after 
executing op

σ ∈ I
op

Assume invariant holds
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Effect applied in a different state!
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⟦op⟧eff(σ) = if P(σ) then f(σ) else if...
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⟦op⟧eff(σ) = if P(σ) then f(σ) else if...
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2. Precondition stability: P will hold when f is 
applied at any replica

1. Effector safety: f preserves I when executed 
in any state satisfying P: {I ∧ P} f {I}
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Prototype tool

• Automates the proof rule

• Discharges verification conditions using SMT

• Case studies: 

‣ fragments of web applications

‣ currently applying to a distributed file 
system



Conclusion

• Weak consistency poses challenges for 
programmability

• But pay-off often worth it: availability,    
cost-effectiveness

• Verification methods enable weakening 
consistency without compromising 
correctness


