A rigorous approach to
consistency in cloud databases

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

J @ Amazon.co.uk: Low Prices in Ele... ‘ - |
<4 & M A www.amazon.co.uk e | (2§~ Google Q) B
ama;on.@m‘k Your Amazon.couk Today's Deals Gift Cards Help Januar y DeaIS > Shog now
——
Shop by = Hello. Sign In 0 Wish
Department v s n Your Account v VBasm v List v

;Compras desde Espaiia? /. Vst

- amazones R ¥
Shopping from Spain? \v/ “! 3 DescObrelo January DeaIS > Shop now

Amazon MP3 Cloud Player Kindle LOVEFILM Appstore for Android Audidle .
Two-Hour Flying Lesson

Meet the

£99 (was “299)

| VA — al

®00 Google
|4 » 2] + B hups@ www.google.com
(0 HE Apple Yahoo! GoogleMaps YouTube Wikipedia News ™ Popular ¥

» See the deal amazoniocal

SHAMBALLA
BRACELETS

+You Gmail Images

Welcome to Facebook - Log In, Sign Up or Learn More
< + Kl brps & www.facebook.com

(I0 =3 Apple Yahoo! GCoogle Maps YouTube Wikipedia News Y Popular ™~

GO gle facebook

Email or Phone

Sign Up
Connect with friends and the It’s free and alw;
world around you on Facebook.

Google Search I'm Foeling Lucky

First name

Email
See photos and updates from friends in News Feed.

Re-enter ema

Share what’s new in your life on your Timeline. New passworc

i+ [l

Birthday

Ama P 1cs, B S (T
@ Amazon.co.uk: Low Prices in Ele
a www.amazon.co.uk e -)l Q

amazon,couk Your Amazon.couk Today'sDeals Gift Cards Help January Deals

Shop b) Hello 0 Wish

Depaﬁment . Semrch | Al v a Your Account v .\.—.,Basket v Lst~

¢Compras desde Espaia? & oo ones
Shopping from Spair ~ » Descobrelo January Deals °
Amazon MP3 Cloud Player 5 LOVEFILM Appstore for Android Audidble
.

gf\f‘

Data is replicated and partitioned
across multiple nodes

me logged |

Sign Up
Connect with friends and the It’s free and alws
e S world around you on Facebook.

See photos and updates from friends in News Feed.

Share what’s new in your life on your Timeline.

Birthday

ing latency

, minimis

)
@)
-
(4]
.
v
O
s’
<
Q
P’
(Vg
(qv]
2
a

ing latency

, minimis

)
@)
-
(4]
.
v
O
s’
<
Q
P’
(Vg
(qv]
2
a

ing latency

, minimis

)
@)
-
(4]
.
v
O
s’
<
Q
P’
(Vg
(qv]
2
a

With thousands of machines inside

e
\ o
P—

‘ Load-balancing, fault-tolerance l

Replicas on mobile devices

Offline use

U

® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

U

® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

® Requires synchronisation: contact other
replicas when processing a request

U

® Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]

U

® FEither streng-Censisteney or Availability in the

presence of network Partitions [CAP theorem]

U

® FEither streng-Censisteney or Availability in the

presence of network Partitions [CAP theorem]

® |ncreased latency and resource consumption

Relaxing synchronisation

R o R
| | | |
Q\. R v T v @

deposit(100) —

Process an update locally, propagate effects to
other replicas later

Relaxing synchronisation

deposit(100) —
Process an update locally, propagate effects to

other replicas later

+ Better scalability & availability

= Weakens consistency: deposit seen with a delay

Anomalies ~ relaxed memory

A f

J
J
N

deposit(100)

notify(done)

Anomalies ~ relaxed memory

“ R R
| | | |
S o - @

deposit(100) \

notify(done)

»‘

getNotif() : done

balance() : 0

Anomalies ~ relaxed memory

R ¥ R
A [(1 8

deposit(100) \

l Causal dependency

notify(done)

»‘

getNotif() : done

balance() : 0

‘«1"92

Faw).

Cassandra

Microsoft Azure
DocumentDB

amazon

DynamoDB

wriak

“
h COPS |

Don’t Settle for Eventual:
Scalable Causal Consistency for Wide-Area storage Wit

Wyatt Lioyd*. Michael J. Freedman®, Micha
*Princeton University, *Intel Labs,

I ———
e

B p .
b J
’ ’

e eley and "University of Syd
ney

Marcos K. Aguilera’ Jinyang L’

t Microsoft Research Silicon Valley .

Yair Sovran’ Russell Power”
- New York University

—

_’ —

Event
uall .
actions

Sebastia
n Burckhard1
’ nuel Fihndri
rich!

s d
nd MOO]y SagiV‘?

] -

2 _?";Crosofl Research

— e ol Avs .
= AV]V University

gcalable Caus

. eedman*, Michae!
Cassandra iyt Loy, Michaet J. Freedmart IEECEE

«Princeton Univers

‘
””i“ﬁw ‘ Don't Settle for Eventual: |

Peter Bailis, Aaron Davidson, Alan Fe :
a ’ kete?f Ali Ghodsi, Joseph M. Hell . .
DT(SC’L J HI&MID ! ‘_L_?_:’C‘E—Serkeley and *University of Sycney ellerstein, lon Stoica
: ems
torage for geo-rephcated syst
- o)
Transactlona\ > guilera’ Jinyang L

marcos K. A

Russell Power t Microsoft Resear W

amazon var Sovr'ar\lne‘w York University
—
DynamoDB Eventually . <
Y Consistent Tyq

® A spectrum of consistency models:
w eventual consistency, causal consistency, ...

® Programming constructs for mitigating weakness

Problem

® |s a given consistency model good for
maintaining correctness in a given application!?

Does it weaken consistency too much, too little,
just right?

® How should programmers use the models
and programming features correctly?

No guidelines, patterns, static analysis tools,
informal or inadequate specifications

Problem

® |s a given consistency model good for
maintaining correctness in a given application!?

practice

BOLIRLLASLADSALT 140042

(rarsparent manncr; sndct & amder

D 't k St L
® ® Building reliable distributed systems padhrwrvger—ghoagiar-warer-ghrhs-a
ust r’ t at a worldwide scale demands trade-offs :.‘_’::__'__".li;'“;"T"\n,':"";‘:l':_';‘ -
L] between consistency and availability. techriqees imide the services

One of the ways i which this man)

BY WERNER VOGELS fests selfl is in the ype of data con

shsvency that is peevided, particulerly

when many widoperad diver ibuged

systemms proside an ewanval cnas
rewy moodel [n e commest of data repr
leation. When designing these large

sonle mslerms of Amaoon, we sse 2 sct

. 4 4 a
of puding pring iples and absrrations
relaned 1o larpescale data seplication
and focus o the tndeof s detwem

high svallabiity sad data conudstoncy

Here, | present some of B relevant

® How should programmers use UL

gobal scale. (A0 cartior version of this
I Al ol loud computin articie sppexod s a postng on the
"Al Thisgs Distrbosed”™ Weblog and

= - a_— inira uctu SCIVICES \ wan greatly impooved with the help of
| 2 Sto S (Simn nd F(ticComnbp Its readers
‘ ‘ e Historical Perspectve
Interne [iputin natform nd a greatvanety | man ideal world there would be caly
{a I licatic | « g \ (nthes Oone Conistency model: when an up

date s made all observens would see
that update. The Hewt time ths sar

“If.no new updates are made tO the (| | Gt st o the e 1950

The bewt "period plece™ on this topec

50 Te ! 1S Wil cmi Is “Notes on Distribused Datadases*
bry Broce Lindsay et al ™ It beys oun the

fundamental penciples for database

database, then replicas will o s e |

ey 0o achicve dsdridation & amipuren
cp—that s, o the user of the yyutem it
VTl hat nori R low probabiliny appeans as i there is only one systom

instesd of & number of llstoestng

eventually reach a consistent state” sccounted o pfront it | EREREID

break fuls wanspareny ’

In the md-1990s, with the rhwe of
1Hou int con wn rmorman l larges Incer et wystomns, thes practi

o8 weor tevishied. Al the time people

' ‘ began to consider the Mea that avall
ol A L L nn | ¥ Ll 1 r . abiley was perbaps the most lmpor

Problem

® |s a given consistency model good for
maintaining correctness in a given application!?

Does it weaken consistency too r

just right?

® How should programmers use

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state™

practice

BOLIRLLASLADSALT 140042

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

BY WERNER VOGELS

Eventually
Consistent

AT THE FO AT1ON of Amazon's cloud com nga
infra (I ([Amazon’s S imple
M Oraey (Siamp B.a E¢ istic Compt
ot tha ide the resources fo L l
I n cale nputi) rms and a great [
fapplicati h quiret Macedon th
inira ct vICe 1T (need
core h I intheare [ccurnt
labi werformance 1d cffectiv 13
([hese ree nent hil cm
millions ol customers around t obe, ¢ inuousl
| | \ A i na
(1 1L O L wWor Cale
| le creates additional ¢ len CCal
vl M Processe T \ tnllor {
req t en hat nor ! | irobabi
T I Carn irantec O happer 1
I CL i¢edforu nti he L nan
chi 1 fth em., Given the rdwid
COJ Ith 1 { n technxt
| 1o rl 1 0l wen rmorman 1<)
| 1 avatlabah Although repl L n O
0 Ol 3 1 nn 1 1 !

(rarsparent manncr; sndct & amder
of conditions the costomen of these

services will be coafroated with the

conseguences of using eeplication
tec hrdgues innide the servioes

One of the ways i which this man)
fests uself s in the ppe of data com
shency that s peevided, pacticulsrly
when many widoperad diveribaged
systemms proside an ewanal cnds
rewy moodel [n e commest of data repr
leation. When designing these large
scale mpsloms o Amacon, we sse 2 st
of puding pring iples and absrrations
relaned 10 larpescale data peplication
and focus on the tndeofs betwem
high ssvallabiiny sad data conustency
Here, | present some of O relevan

background that has informed ow ap
proxch o delvering reliable datrib
uted mtams that must Operate on a
gobal scale. (A0 cartior version of this
article ppexod as a postng on the
"ARl Thisgs Datrbosed™ Weblog and
wan preatly impeoved with che help of
Its readers

Historical Perspective

In an Keal world there would be caly
one comisency model: when an up
date s made all observens would see
that update. The firmt time this ser
facod as JiMDcul 1o achieve wis in the
databuse spstemns of the lake 1900
The bewt "period plece™ on this togec

Is “Notes on Disribused Dw s’

bry Bruce Lindsay et al ™ It beys oan the

fundamental penciples for database
replication sand dscumes & ramber
of wchalques that deal wied x Neving
Consstency. Mans of these techniques
ey 00 achicve dsdridanion &ramipures
p-that s, 0o the usr of the yyatem it
Appeans as i here is only one systom
Instend of a0

ey of collstoestng
sysietrs. Many systerms during ths
timw took the approach that & was bet
ey 1o fall the
break fuis wansparency

In the mid-1990s, with the riwe of
larges Intermet wystomns, thew practi
o8 weoe tevishied. A thae time people

plete systom than so

began to consider the Mea that avall
abiley was perhaps the mont lmpor

Problem

® |s a given consistency model good for
maintaining correctness in a given application!?

practice

BOLIRLLASLADSALT 140042

| traraparent manncr; endct a mamder

D 't k st L
° °® Building reliable distributed systems OF CHRERINNS the cuttimens of iy
ust r’ t at a worldwide scale demands trade-offs :“,r:::r_"_'f:‘h“;"T"\",:m;f,‘:_'" -
o between consistency and availability. techriques imide the services

One of the ways i which this man)

BY WERNER VOGELS fests self is in the ppe of data con

shsvency that is peevided, particulerly

when many widoperad diveribaged

systemms proside an ewanal cnds
rewy moodel [n e commest of data repr
leation. When designing these large

soale mpslomms o Amanon, we sse 2 sct

. 4 .
of puding pring iples and absrrations
relaned 10 larpescale data peplication
and focus on the tndeof s betwem

high svallabiity sad data conustency
Here, | presont some of B 1

® How should programmers use ==

gobal scale. (A8 eartier version of this
article ppexod as a postng on the
"Al Thisgs Distrbosed”™ Weblog and
wan greacly impooved with the help of
4 SLOrage Servic Simp B, and E¢ e Compt Its readers

| - | INirastructure sCrvices s sAmazon’ssS

Historical Perspective
Internet-scale computing platforms and a great variety | man ideal world there would be caly
{a I] 110N e quirer 1s nla don these one cormisency model: when an up

date s made all observens would see

“ MTastruciure sen b &t JELLLL ney { that update. The firmt time this wer
core h m s inthe are of security, s 1bhility faced as diffoult 1o achieve was in the

vailabilitv. performance nd t-effectiv ess. and databuse ssstemns of the lake 1970

The bewt "period plece™ on this topec

(ey nec nect these requ nents while servi Is “Notes on Distribused Datadases*

bry Broce Lindsay et al ™ It beys oun the

fundamental penciples for database

database, then replicas will e o |

. ey 0o achicve dsdridation & amipuren
when WO Processes ranons trillions of cp—that Is, 0 the user of the system It
req Oy ven hat normallyv haw low probability Appeans as i here is only one systom

. instend of & number of colladoestng

eventually reach a consistent state™

break s nans

In the mid-1990s, with the riwe of
biguitou t uarantee consistent performance 1<) | langer Internet wystoms, thes practi
o8 weoe tevishied. A thae time people

began to consider the Mea that avall
| abikty was perhaps the most lmpor

TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman. Gregory Chockler. Robbert van Renesse

This particular example 1s a good one because, as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chubby: when locking actually can’t be avoided. one wants a reliable, standard. provably correct

TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman. Gregory Chockler. Robbert van Renesse

This particular example 1s a good one because, as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chubby: when locking actually can’t be avoided. one wants a reliable, standard. provably correct

F1: A Distributed SQL Database That Scales

Jeff Shute Radek Vingralek Bart Samwel Ben Handy
Chad Whipkey Eric Rollins Mircea Oancea Kyle Littlefield
David Menestrina Stephan Ellner John Cieslewicz lan Rae”*
Traian Stancescu Himani Apte

Google, Inc.
*University of Wisconsin-Madison

ABSTRACT consistent and correct data.

F1 1s a distributed relational database system built at l)osigni.ng 'HPPHC{%UOHS to cope with concurrency
Google to support the AdWords business. Fl is a hybrid an()ma]l.os n thmr' data 1s very error-prone, time-
database that combines high availability, the scalability of consuming, and ultimately not worth the performance

NoSQIL systems like Bigtable, and the consistency and us- gains.

TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman. Gregory Chockler. Robbert van Renesse

This particular example is a good one because. as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chublpss—shan lacline g ¢+ ho avaided anesvante o ralighla ctandard e —

Need a rigorous approach: programming models
and static analysis tools that allow relaxing
synchronisation without compromising correctness

David Menestrina Stephan Ellner John Cieslewicz lan Rae”
Traian Stancescu Himani Apte

Google, Inc.
*University of Wisconsin-Madison

ABSTRACT consistent and correct data.

2y . . e . . Jesigning applications to cope with concurrency
F1 is a distributed relational database system built at Designing applications to cope with concurrenc;

Google to support the AdWords business. F1 is a hybrid
database that combines high availability, the scalability of
NoSQL systems like Bigtable, and the consistency and us-

anomalies 1n their data 1s very error-prone, time-
consuming, and ultimately not worth the performance
gains.

Research agenda

Research agenda

Formal semantics
specification

Research agenda

Reasoning about DB Formal semantics
implementations specification

Research agenda

HSJH—

Reasoning about DB Formal semantics Reasoning about
implementations specification applications

Research agenda

H@H—

Reasoning about DB Formal semantics Reasoning about
implementations specification applications

Improve DB programming models and implementations

Research agenda

—> rﬁa

Reasoning about DB Formal semantics Reasoning about
implementations specification applications

Joint work with Hongseok Yang (Oxford), Carla Ferreira
(U Nova Lisboa), Mahsa Najafzadeh, Marc Shapiro (INRIA)

Synchronisation can be necessary

TL\ [—J balance > 0 FJ @

balance = 100 balance = 100

Synchronisation can be necessary

“,‘v\,‘\ [] balance > 0 [] @

balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

balance = 0 balance = 0

Synchronisation can be necessary

balance = 0 [;] @

balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

balance = 0 balance = 0

balance = -100

Synchronisation can be necessary

A : 5 balance > 0 : 5 8

balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

balance = 0

balance = 0

&

— :
L J balance = -100

deposit(100) |

Consistency choices

® Choose consistency level for each operation:

» Withdrawals strongly consistent

» Deposits eventually consistent

® Pay for stronger semantics with latency,
possible unavailability and money

® Hard to figure out the minimum consistency
necessary to maintain correctness -
proof rule and tool

Consistency mode]

Generic model - not implemented, but can
encode many existing models that are

® (Causal consistency as a baseline:
observe an update =¥ observe the updates

it depends on

® A construct for strengthening consistency
on demand

Operation semantics

-

!
0)

op

]:OP]]vaI

Replica states: 0 € State

Return value: [op]va € State = Value

Operation semantics

-
-

-
=

g
O
i [OPler(a) o
]:OP]]vaI —
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effector: [op]es € State — (State — State)

Operation semantics

i —\] i —\]
- -
O ;
i [OPler(cr) o
]:OP]]vaI —
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effector: [op]es € State — (State — State)

Operation semantics

—

¥ ¥

O
i [OP (o))
]:OP]]vaI EffeCtOr E
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effector: [op]es € State — (State — State)

Operation semantics

il —\] il —\]
. 2 -
O :
i [OPler(a) ,
]:OP]]vaI EffeCtOr g
[oples(T)(T)

Replica states: 0 € State

Return value: [op]va € State = Value

Effector: [op]es € State — (State — State)

Operation semantics

— —

R ¥ R 2
- -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)
State = Z

[balance()[va(O) = O

[balance()]er(O) = AC.O

Operation semantics

il “} il “}
e 2 e 2
O :
°P |- [OPle(0))
[op]val E
[oples(T)(T)

[deposit(100)]e(0) = AC’. (0" + 100)

Operation semantics

— —_—

U } U }
- -
O :
°P |- [OPle(0) 50
]:OP]]val -
[oples(T)(T)

[deposit(100)]e(0) = AC’. (0" + 100)

Operation semantics

— —

il]J i]J
- -
O :
oP |- [OPle(0) 50
]:OP]]val -
|50

[deposit(100)]e(0) = AC’. (0" + 100)

Ensuring eventual consistency

® Effectors have to commute:

Vopi,op2, 01, 02. [opile(O1) ; [op2lef(02) =
[op2]eif(O2) ; [opile(O1)

® Eventual consistency: replicas receiving the
same messages in different orders end up in

the same state

® Replicated data types [Shapiro™ 201 []:
ready-made commutative implementations

Operation semantics

— —

R ¥ -
e : !
O ;
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". ¢" - 100) else (AC". C7)

Operation semantics

—_

i i
L J -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". C7)

Operation semantics

—_

i i
L J -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". 07)

Operation semantics

—_

i i
L J -
O :
°P |- [OPle(0) o
]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 > 100 then (AG". 0" - 100) else (AC”. 07)

_— o

il il
- -
e v v

balance = 100 balance = 100

/ /

withdraw/(100) :i/) Ao’.o’ - 100 (\withdraw(IOO) 4

-« —
balance = (balance = (

[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". 07)

,’/'

7 R B
. 2 . 2

balance = 100 balance = 100

withdraw(100) : ¢/

Ao’.o’ - 100 (\withdraw(IOO) 4

(7
balance = (

_)
balance = (

balance = -100

[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". 07)

Strengthening consistency

Token system = locks on steroids:

® Token = {T|, T2, ...}

® Symmetric conflict relation X C Token % Token

Strengthening consistency

Token system = locks on steroids:

® Token = {T|, T2, ...}

® Symmetric conflict relation X C Token % Token

Example - mutual exclusion lock:
Token ={T}; TX T

Strengthening consistency

Token system = locks on steroids:

® Token = {T|, T2, ...}

® Symmetric conflict relation X C Token % Token

Example - mutual exclusion lock:
Token ={T}; TX T

Each operation associated with a set of tokens:
[oplok € State — P(Token)

Operations associated with conflicting tokens

cannot be unaware of each other

-

3
£

balance = 100

withdraw(100) : ¢/

T}

TXT

-

3
£

balance = 100

Operations associated with conflicting tokens

cannot be unaware of each other

_— —

: &

balance = 100

withdraw(100) : ¢/

T}

TXT

i

balance = 100

withdraw(100) : ?

Anything | don’t
know about!?

Operations associated with conflicting tokens
cannot be unaware of each other

-

- -
e 5 THT e 5

balance = 100 balance = 100

-

withdraw(100) : ¢/

T}

balance = 0

withdraw(100) : ?

Operations associated with conflicting tokens
cannot be unaware of each other

-

- -
e 5 THT e 5

balance = 100 balance = 100

-

withdraw(100) : ¢/

T}

balance = 0

withdraw(100) : X

Operations associated with conflicting tokens
cannot be unaware of each other

- -
- THT -

balance = 100 balance = 100

withdraw(100) : ¢/

{T} g
[| ;] balancé:e =0

deposit(100) withdraw(100) : X

— 9 i
No synchronisation

Do we always have J = (balance > 0)?
Rely-guarantee-based proof rule

IL } TXT IL }

» »
balance = 100 balance = 100
withdraw(100) : ¢/
{T}

[’—\] balance = 0

-
deposit(100) withdraw(100) : X

< {T}

No synchronisation

E 2
:
R v
O €] «<—— Assume invariant holds

op

«<—— Check it’s preserved after
executing op

ocl

oo |

[OP ()

/

O

~>

[ople#(O)(O7) € 12

Effect applied in a different state!

£ £
oel :
°P F [OP ()

/

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". ")

g g
oecl :

Op l[op.ﬂeff(O')

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

/-
l_‘_‘_//

Op l[op.ﬂeff(O')

/

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

g g
oecl :

Op l[op.ﬂeff(O')

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

£ £
oecl :

Op l[op.ﬂeff(O')

/

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal :=bal-100 {bal = 0}

Op [[OP]]eff(O')

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

Op [[OP]]eff(O')

O

~>

[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal :=bal-100 {bal = 0}

g g
oecl :

Op l[op.ﬂeff(O')

O

~>

[ople#(O)(O) € T/

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

£ £
oecl :

Op l[op.ﬂeff(O')

o' |P(a")?

~>

[ople#(O)(O) € T/

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

{bal = 0 A bal = 100} bal := bal-100 {bal = 0}

£ £
ogel :
©P [OP ()

o' |P(a")?

~>

[ople#(O)(O) € T/

[oplew(T) = if P(O) then f(O) else if...

|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}

2. Precondition stability: P will hold when f is
applied at any replica

[oples(T) = if P(O) then f(O) else if...
[opliok(O) = if P(O) thenT else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f' {P}

[oples(T) = if P(O) then f(O) else if...
[opliok(T) = if P(O) then T else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f" {P}
[withdraw(100)Jok(0) = {T} TXT
[deposit(100)]wk(0) = @

Check stability of withdraw’s precondition
against deposits:

{bal = 100} bal := bal+100 {bal > 100}

[oples(T) = if P(O) then f(O) else if...
[opliok(O) = if P(O) thenT else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f" {P}
[withdraw(100)Jok(0) = {T} TXT
[deposit(100)]wk(0) = @

Check stability of withdraw’s precondition
against deposits:

{bal = 100} bal := bal+100 {bal = 100}

[oples(T) = if P(O) then f(O) else if...
[opliok(T) = if P(O) then T else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f" {P}
[withdraw(100)Jok(0) = {T} TXT
[deposit(100)]wk(0) = @

Check stability of withdraw’s precondition
against deposits:

{bal = 100} bal := bal+100 {bal > 100}

[oples(T) = if P(O) then f(O) else if...
[opliok(T) = if P(O) then T else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f" {P}
[withdraw(100)Jok(0) = {T} TXT
[deposit(100)]wk(0) = @

Check stability of withdraw’s precondition
against deposits:

{bal = 100} bal := bal+100 {bal = |00}

Prototype tool

® Automates the proof rule
® Discharges verification conditions using SMT

® (ase studies:
» fragments of web applications

» currently applying to a distributed file
system

Conclusion

® Weak consistency poses challenges for
programmability

® But pay-off often worth it: availability,
cost-effectiveness

® Verification methods enable weakening
consistency without compromising
correctness

