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With thousands of machines inside
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‘ Load-balancing, fault-tolerance l



Replicas on mobile devices

Offline use



U

® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability



U

® Strong consistency model: the system behaves as
if it processes requests serially on a centralised
database - linearizability, serializability

® Requires synchronisation: contact other
replicas when processing a request
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® Either strong Consistency or Availability in the
presence of network Partitions [CAP theorem]
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® FEither streng-Censisteney or Availability in the

presence of network Partitions [CAP theorem]

® |ncreased latency and resource consumption
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other replicas later



Relaxing synchronisation

deposit(100) —
Process an update locally, propagate effects to

other replicas later

+ Better scalability & availability

= Weakens consistency: deposit seen with a delay



Anomalies ~ relaxed memory
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Anomalies ~ relaxed memory
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deposit(100) \

notify(done)

»‘

getNotif() : done

balance() : 0




Anomalies ~ relaxed memory
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deposit(100) \

l Causal dependency

notify(done)

»‘

getNotif() : done

balance() : 0
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® Programming constructs for mitigating weakness




Problem

® |s a given consistency model good for
maintaining correctness in a given application!?

Does it weaken consistency too much, too little,
just right?

® How should programmers use the models
and programming features correctly?

No guidelines, patterns, static analysis tools,
informal or inadequate specifications
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® |s a given consistency model good for
maintaining correctness in a given application!?
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Problem

® |s a given consistency model good for
maintaining correctness in a given application!?

Does it weaken consistency too r

just right?

® How should programmers use

“If no new updates are made to the
database, then replicas will
eventually reach a consistent state™

practice
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This particular example 1s a good one because, as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chubby: when locking actually can’t be avoided. one wants a reliable, standard. provably correct
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TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman. Gregory Chockler. Robbert van Renesse

This particular example is a good one because. as we’ll see shortly. if there was a single overarching
theme within the keynote talks. it turns out to be that strong synchronization of the sort provided
by a locking service must be avoided like the plague. This doesn’t diminish the need for a tool like
Chublpss—shan lacline g ¢+ ho avaided anesvante o ralighla ctandard e —

Need a rigorous approach: programming models
and static analysis tools that allow relaxing
synchronisation without compromising correctness

David Menestrina  Stephan Ellner  John Cieslewicz lan Rae”
Traian Stancescu  Himani Apte

Google, Inc.
*University of Wisconsin-Madison

ABSTRACT consistent and correct data.

2y . . e . . Jesigning applications to cope with concurrency
F1 is a distributed relational database system built at Designing applications to cope with concurrenc;

Google to support the AdWords business. F1 is a hybrid
database that combines high availability, the scalability of
NoSQL systems like Bigtable, and the consistency and us-

anomalies 1n their data 1s very error-prone, time-
consuming, and ultimately not worth the performance
gains.
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Research agenda

H@H—

Reasoning about DB Formal semantics Reasoning about
implementations specification applications

Improve DB programming models and implementations



Research agenda

—> rﬁa

Reasoning about DB Formal semantics Reasoning about
implementations specification applications

Joint work with Hongseok Yang (Oxford), Carla Ferreira
(U Nova Lisboa), Mahsa Najafzadeh, Marc Shapiro (INRIA)



Synchronisation can be necessary

TL\ [—J balance > 0 FJ @

balance = 100 balance = 100




Synchronisation can be necessary
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balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

balance = 0 balance = 0



Synchronisation can be necessary

balance = 0 [;] @

balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

balance = 0 balance = 0

balance = -100



Synchronisation can be necessary

A : 5 balance > 0 : 5 8

balance = 100 balance = 100

withdraw(100) : ¢/ withdraw(100) : ¢/

balance = 0

balance = 0

&

— :
L J balance = -100

deposit(100) |




Consistency choices

® Choose consistency level for each operation:

» Withdrawals strongly consistent

» Deposits eventually consistent

® Pay for stronger semantics with latency,
possible unavailability and money

® Hard to figure out the minimum consistency
necessary to maintain correctness -
proof rule and tool



Consistency mode]

Generic model - not implemented, but can
encode many existing models that are

® (Causal consistency as a baseline:
observe an update =¥ observe the updates

it depends on

® A construct for strengthening consistency
on demand
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Operation semantics
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]:OP]]val -
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[deposit(100)]e(0) = AC’. (0" + 100)



Ensuring eventual consistency

® Effectors have to commute:

Vopi,op2, 01, 02. [opile(O1) ; [op2lef(02) =
[op2]eif(O2) ; [opile(O1)

® Eventual consistency: replicas receiving the
same messages in different orders end up in

the same state

® Replicated data types [Shapiro™ 201 []:
ready-made commutative implementations
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Operation semantics
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]:OP]]val -
[oples(T)(T)

[withdraw(100)]es(0) =
if 0 > 100 then (AG". 0" - 100) else (AC”. 07)
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[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". 07)
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balance = 100 balance = 100

withdraw(100) : ¢/

Ao’.o’ - 100 (\withdraw(IOO) 4

(7
balance = (

_)
balance = (

balance = -100

[withdraw(100)]es(0) =
if 0 = 100 then (AG”". 0" - 100) else (AC". 07)
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Strengthening consistency

Token system = locks on steroids:

® Token = {T|, T2, ...}

® Symmetric conflict relation X C Token % Token

Example - mutual exclusion lock:
Token ={T}; TX T

Each operation associated with a set of tokens:
[oplok € State — P(Token)



Operations associated with conflicting tokens

cannot be unaware of each other

-

3
£

balance = 100

withdraw(100) : ¢/

T}

TXT

-

3
£

balance = 100



Operations associated with conflicting tokens

cannot be unaware of each other

_— —

: &

balance = 100

withdraw(100) : ¢/

T}

TXT

i

balance = 100

withdraw(100) : ?

Anything | don’t
know about!?




Operations associated with conflicting tokens
cannot be unaware of each other

-

- -
e 5 THT e 5

balance = 100 balance = 100

-
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Operations associated with conflicting tokens
cannot be unaware of each other
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withdraw(100) : ¢/

T}

balance = 0

withdraw(100) : X




Operations associated with conflicting tokens
cannot be unaware of each other

- -
- THT -

balance = 100 balance = 100

withdraw(100) : ¢/

{T} g
[ | ;] balancé:e =0

deposit(100) withdraw(100) : X

— 9 i
No synchronisation



Do we always have J = (balance > 0)?
Rely-guarantee-based proof rule

IL } TXT IL }

» »
balance = 100 balance = 100
withdraw(100) : ¢/
{T}

[’—\] balance = 0

-
deposit(100) withdraw(100) : X

< {T}

No synchronisation
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O € ] «<—— Assume invariant holds

op

«<—— Check it’s preserved after
executing op
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[ople#(O)(O7) € 12

Effect applied in a different state!
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[ople(O)(C) € I

[oplew(T) = if P(O) then f(O) else if...

[withdraw(100)]es(0) =
if 0 = 100 then (AG". G" - 100) else (AC". ")
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|. Effector safety: f preserves J when executed
in any state satisfying P: {J A P} f {J}
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applied at any replica




[oples(T) = if P(O) then f(O) else if...
[opliok(O) = if P(O) thenT else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f' {P}
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[withdraw(100)Jok(0) = {T} TXT
[deposit(100)]wk(0) = @

Check stability of withdraw’s precondition
against deposits:

{bal = 100} bal := bal+100 {bal > 100}
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that is not associated with a token conflicting
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[oples(T) = if P(O) then f(O) else if...
[opliok(T) = if P(O) then T else if...

P is preserved by any effector f' of any operation
that is not associated with a token conflicting

with T: {P} f" {P}
[withdraw(100)Jok(0) = {T} TXT
[deposit(100)]wk(0) = @

Check stability of withdraw’s precondition
against deposits:

{bal = 100} bal := bal+100 {bal = |00}



Prototype tool

® Automates the proof rule
® Discharges verification conditions using SMT

® (ase studies:
» fragments of web applications

» currently applying to a distributed file
system



Conclusion

® Weak consistency poses challenges for
programmability

® But pay-off often worth it: availability,
cost-effectiveness

® Verification methods enable weakening
consistency without compromising
correctness



