

altran

Global leader in innovation and high-tech engineering consultancy

Formal Verification: Will The Seedling Ever Flower?

Agenda

- Introductions
- Technology Graduation
- Life in Industry
- Asking some Questions...

Agenda

- Introductions
- Technology Graduation
- Life in Industry
- Asking some Questions...

Altran Group

INNOVATION MAKERS

Key numbers (2015)

Altran in the UK

Key numbers (2015)

INNOVATION MAKERS

Our World - Critical Software

No defects please!

Agenda

- Introductions
- Technology Graduation
- Life in Industry
- Asking some Questions...

Principles

Correctness by Construction

Avoid introducing defects

Introducing defects is easy removing them is hard, and expensive.

Remove defects early

Defects removed early when changes are cheap.

Generate evidence as you go

Evidence needed for certification is produced naturally as a by-product of the process.

Testing is a demonstration of correctness

Not the point where we start debugging.

Prediction over observation.

Better can be cheaper

Safety is given. How you get there determines the cost.

Zero tolerance of defects

We cannot claim zero defects but we can have a zero tolerance attitude to them.

The cost of errors

Correctness by Construction

Source:Leffingwell http://www.rational.com/m edia/whitepapers/roi1.pdf

Source: CMM Data from Jones, Caspers: Software Assessments, Benchmarks and Best Practices. Reading, MA: Addison-Wesley, 2002

Source: C By C data from Correctness by Construction: A manifesto for High-Integrity software, Croxford and Chapman 2005

What's in the toolbox?

- Lots of things!
 - REVEAL[®] (Jackson style D, S, R) requirements
 - Z
 - SCADE
 - Matlab / QGen
 - SPARK
 - ConTestor
 - High Integrity Agile
 - etc.

SPARK: Technology Transfer Timeline

Agenda

- Introductions
- Technology Graduation
- Life in Industry
- Asking some Questions...

SHOLIS

Ultra ELECTRONICS

CONTEXT & OBJECTIVES

- A military system that displays whether ship and helicopter parameters are within safe landing limits.
- UK MOD required the system certified to Def Stan 00-55.
- Def Stan 00-55 required full functional proof.
- First software ever developed to this standard.

APPROACH & SOLUTION

- Specification written in Z.
- Z type checking performed.
- Code developed in SPARK.
- Z specification translated to SPARK specifications.
- Code proven to be compliant with SPARK specifications.

RESULTS & ADDED VALUE

- System passed as Def Stan 00-55 compliant.
- 42 kloc / 9000 VCs.
- 0.22 defects per kloc.
- Demonstrated low value of unit testing when formal methods used.

MGKC

CONTEXT & OBJECTIVES

- Smart card security
- Flaws in software could lead to very high financial impact and reduced confidence in the product
- Security standard ITSEC E6

APPROACH & SOLUTION

- Specification written in Z
- Z type checking performed
- Code developed in SPARK
- Security properties translated to SPARK specifications
- Code proven to maintain security properties

RESULTS & ADDED VALUE

- 100,000 lines of SPARK, Ada, C, C++ and SQL
- Three trivial defects, one spec defect fixed under warranty in first year of operation
- 0.04 defects per kloc

EMU

APPROACH & SOLUTION

- C By C deployed.
- Supported systems engineering and requirements development
- Software design using Informed methodology
- Software developed using SPARK technologies
- Proof of absence of run time errors.

CONTEXT & OBJECTIVES

- To provide a first class service the supplier needs a state of the art Engine Health Monitoring system
- Engine monitoring units needed for whole engine family
- Each engine type has different hardware considerations and electronic interfaces

RESULTS & ADDED VALUE

- Compliant with DO-178B Level C
- Family of engines supported: common source code that is verified once used often
- Joint research project to develop next generation EHM (adaptive, 2-way comms)

Tokeneer Demonstrator

"Produces code more quickly and reliably and at lower cost than traditional methods", NSA

CINITS STATES OF AMERICA

CONTEXT & OBJECTIVES

- US National Security Agency leads the US government in cryptology
- To understand how to build systems that are:
 - cost-effective
 - ultra secure
 - certifiable to Common Criteria EAL5.
- Tokeneer is a biometric access control system

APPROACH & SOLUTION

- Specification written in Z
- Security properties captured in SPARK contracts
- Code written in SPARK
- Security properties proven

RESULTS & ADDED VALUE

- Compliant with Common Criteria EAL5
- Zero defects found in independent system test
- 10kloc SPARK, producing 2623 VCs
- 2513 proved automatically (95.8%)
- Open source information at <u>http://www.adacore.com/tokeneer</u>

iFACTS

NATS

1.iFACTS enables controllers to handle more traffic safely

2.It increases 'look ahead' from 2 to 15 minutes

3. Provides controller tools

- » Medium Term Conflict Detection (MTCD)
- » Trajectory Prediction (TP)
- » Monitoring aids

4. Altran appointed to develop new software for iFACTS

Needs to meet CAA's stringent SW01 objectives

	Grow - Down Sort -			PENDING 09				
	CLLSGN	NFL	XFL	NAV	SPD	INTN		
	TKLM644	370				AM		
	NWA48	390				AM		
	BGH5522	270				F		
	VKG839	380	380			H		
	Z OAE778	300	300			U5		
	MYT988	380	380			PF		
	SAS513	310				LL		
	KLM1472	310				AM		
	RYR713K	310				SS		
	VKG184	390				КЗ		
ZY4438 🖌 8737 300 250 R250 h150 m53 AM								
	7	-10 - 10 -	-	INCOMM 09		I manager 1		
	Grow Down Sort					RESET	-	
	CLLSGN	CFL	XFL	NAV	SPD	INTN		•
.350 -	EIN69D ¥			L10		F	.58	200
310	RCH0173 ¥		310	NAVPI TEBRO		ZZ	.57	195
330	LXIMS V			255	180	GW *	10000	
320	I SCW6209 ¥		290	REMSI		F	.56	190
310	CN05737 ¥			HDG	52		.55	185
300	🔲 DLH436 🖌		360			U6		
290	SAS529 ¥		300			LL	.54	180
280 -	EZY4438	300		150	53	AM	.53	175
270	TCX372		330	DOLAS DIBAL	51 170	F	.52	170
BRTSBJ F 260				120	51 170	F *	1 22200	
250	BRT845	240	240	120	51+ 165+		.51	165
KLM1209 PH 240	FINB91		350	KUBAX	51 F 105T	H	.50	160
230	L THOUSE V				-		100000	Louise
	CLLSGN	CFL	XEL	HDG ROUTE	SPD	N		•
10 20 30 40 50 60 70 80 90 100		-				ENTER	~+	ROS
tn Code 💷 NOW	EZY4438	300	250	150	53			103
								_
•	HOLD		L	Continue R				
	4 13	0 135	1.40 1.45	5 150 155 160 165	170			
		a 1.00 1		- 1 res 1 res 1 res 1 res 1	11000 BRID			

- » In full operational service since December 2011.
- » Formal functional specification in Z.
- » Almost all code in SPARK 250kloc logical.
- » Proved "type (and memory) safe" i.e. for any input data and state, no undefined behaviour, no crashes, no exceptions.
- » 152,927 VCs, of which 98.76% discharged automatically. Userdefined lemmas and review for the remainder.

""The iFACTS system and operational concept is ground breaking and genuinely unique in the world of Air Traffic Control. The new working process is already seeing significant benefits across the NATS business, and airports and airline customers are seeing the benefit too."

Jonathan Astill, General Manager, Area Control, NATS

Agenda

- Introductions
- Technology Graduation
- Life in Industry
- Asking some Questions...

Discussion

- So why haven't formal methods taken over the software industry?
 - They lead to cheaper projects
 - They lead to higher quality projects
- What more do you need?
- Why do we focus on critical software?

- "I don't want to be locked into a tool from a single vendor."
 - Actually I have some sympathy with this one.
 - But it's not an issue limited to formal methods.
 - And it's not such a big deal as you might think because all projects freeze tools early on.

"I've bought <tool> and it was very expensive so I have to use it."

- This is what happens when finance run projects instead of engineers.
- Inhibits innovation, research, improvement, and onward development.

- "My team don't know <tool> so we can't use it."
- If your team have a good grounding in basic computer science principles, then given the right training, they can pick up any tool quick enough.
- Another inhibitor to innovation.

- "We want to use Industry Standards" or "We want to use Industry Practice."
- You should use Best Practice.

"We don't like to spend more upfront."

- Generally the cost profile of a formal methods project has more spend before code starts to be written.
- But all the data shows the spend overall is lower.

- "I want a sexy drag-and-drop graphical interface."
- You are shallow and vacuous.
- Tools exist; usability will follow users.

I conclude that industry rejection of formal methods is not a logical position ... but how do you combat that?

AITRA

- Tougher standards?
- End user education?
- Hide the formality?

ConTestor

- We are currently rolling out a new test approach as part of our verification toolset.
- Many teams automate the running of tests.
- We are automating the initial production of tests too.
- It's a hidden formal method.
- Is hiding the formality the way forward?

I don't know ... but nor do I currently know anything better...

So what have we learnt?

- University research in formal methods can be deployed with great success in industrial projects.
- Getting industry acceptance is the hardest part.
- It's not a logical rejection.
- It's not clear what the objection is.

- Stay Logical: We always need independent up-to-date papers comparing formal and non-formal approaches so that we can have logical, data-based, discussions.
- Fight the illogical: We need to bring formal methods to the attention of industry in new ways.

INNOVATION MAKERS

