
Global leader in innovation and

high-tech engineering consultancy

Formal Verification:
Will The Seedling Ever Flower?

• Introductions
• Technology Graduation
• Life in Industry
• Asking some Questions…

Agenda

• Introductions
• Technology Graduation
• Life in Industry
• Asking some Questions…

Agenda

AIT
Automotive, Infrastructure & Transportation
ASDR
Aerospace, Defence & Rail
EILiS
Energy, Industry & Life Sciences
TEM
Telecoms, Electronics & Media
FSG
Financial Services & Government

TEM
16%

AIT
23%

ASDR
24%

EILiS
25%

FSG
12%

25,000
+FTEs

€1.945BN
Revenues

Offices in
23 countries

Altran Group Key numbers (2015)

Distribution of
Group Revenues 2015:

6

Key numbers (2015) Altran in the UK

Bristol

Bristol
London

Warwick
Cambridge

Reading Bath

€159M
Revenues

(2015)*

Offices in
16 locations

850+
FTEs*

Derby

Slough

Penrith

Manchester

Glasgow

Abingdon

*Excluding Tessella

No defects please!

Our World – Critical Software

• Introductions
• Technology Graduation
• Life in Industry
• Asking some Questions…

Agenda

Principles

Avoid introducing defects

Introducing defects is easy –
removing them is hard, and
expensive.

Generate evidence as you go

Evidence needed for certification is
produced naturally as a by-product of
the process.

Remove defects early

Defects removed early when
changes are cheap.

Correctness by Construction

Testing is a
demonstration of
correctness

Not the point where we start
debugging.
Prediction over observation.

Better can be cheaper

Safety is given. How you get there
determines the cost.

Zero tolerance of defects

We cannot claim zero defects but
we can have a zero tolerance
attitude to them.

The cost of errors Correctness by Construction

Source: CMM Data from Jones,
Caspers: Software Assessments,
Benchmarks and Best Practices.
Reading, MA: Addison-Wesley,
2002

Source: C By C data from
Correctness by Construction: A
manifesto for High-Integrity
software, Croxford and
Chapman 2005

Source:Leffingwell
http://www.rational.com/m
edia/whitepapers/roi1.pdf

Source: IEEE Software.
Correctness by Construction:
Developing a Commercial Secure
System, Hall and Chapman, Jan
2002

• Lots of things!
• REVEAL® (Jackson style D, S, R) requirements
• Z
• SCADE
• Matlab / QGen
• SPARK
• ConTestor
• High Integrity Agile
• etc.

What’s in the toolbox?

SPARK: Technology Transfer Timeline

SPADE
 SPARK ‘83
 SPARK Examiner
 Proof Checker

Simplifier
 SPARK ’95

RavenSPARK
 SPARK 2005
 SPARK Pro

Riposte
 SPARK 2014

 AUTOSAC
 …

The Queen's University of Belfast: Hoare Logic
 CII Honeywell Bull: Ada’83
 University of Southampton: Bergeretti-Carré Information Flow Analysis

University of York: deterministic concurrency for real-time systems

University of Bath: Constraint-solving
 University of Edinburgh: SMT solvers
 INRIA: Why3, Alt-Ergo
 NYU: CVC3, CVC4

University of Oxford: Model-checking &
 IEEE-754 SMTLib theory

1980 1990 2000 2010 2016 2020

• Introductions
• Technology Graduation
• Life in Industry
• Asking some Questions…

Agenda

CONTEXT & OBJECTIVES

• A military system that displays whether ship
and helicopter parameters are within safe
landing limits.

• UK MOD required the system certified to Def
Stan 00-55.

• Def Stan 00-55 required full functional proof.

• First software ever developed to this standard.

APPROACH & SOLUTION

• Specification written in Z.

• Z type checking performed.

• Code developed in SPARK.

• Z specification translated to SPARK
specifications.

• Code proven to be compliant with
SPARK specifications.

RESULTS & ADDED VALUE

• System passed as Def Stan 00-55 compliant.

• 42 kloc / 9000 VCs.

• 0.22 defects per kloc.

• Demonstrated low value of unit testing when
formal methods used.

SHOLIS

CONTEXT & OBJECTIVES

• Smart card security

• Flaws in software could lead to very high
financial impact and reduced confidence in the
product

• Security standard ITSEC E6

APPROACH & SOLUTION

• Specification written in Z

• Z type checking performed

• Code developed in SPARK

• Security properties translated to
SPARK specifications

• Code proven to maintain security
properties

RESULTS & ADDED VALUE

• 100,000 lines of SPARK, Ada, C, C++ and SQL

• Three trivial defects, one spec defect – fixed
under warranty in first year of operation

• 0.04 defects per kloc

MGKC

CONTEXT & OBJECTIVES

• To provide a first class service the supplier needs a
state of the art Engine Health Monitoring system

• Engine monitoring units needed for whole engine
family

• Each engine type has different hardware
considerations and electronic interfaces

APPROACH & SOLUTION

• C By C deployed.

• Supported systems engineering and
requirements development

• Software design using Informed
methodology

• Software developed using SPARK
technologies

• Proof of absence of run time errors.

RESULTS & ADDED VALUE

• Compliant with DO-178B Level C

• Family of engines supported: common source
code that is verified once used often

• Joint research project to develop next
generation EHM (adaptive, 2-way comms)

EMU

CONTEXT & OBJECTIVES

• US National Security Agency leads the US
government in cryptology

• To understand how to build systems that are:

• cost-effective

• ultra secure

• certifiable to Common Criteria EAL5.

• Tokeneer is a biometric access control system

APPROACH & SOLUTION

• Specification written in Z

• Security properties captured in SPARK
contracts

• Code written in SPARK

• Security properties proven

RESULTS & ADDED VALUE

• Compliant with Common Criteria EAL5

• Zero defects found in independent system test

• 10kloc SPARK, producing 2623 VCs

• 2513 proved automatically (95.8%)

• Open source information at
http://www.adacore.com/tokeneer

“Produces code more quickly and reliably and
at lower cost than traditional methods”, NSA

Tokeneer Demonstrator

http://www.adacore.com/tokeneer

NATS

1.iFACTS enables controllers to handle more traffic safely

2.It increases ‘look ahead’ from 2 to 15 minutes

3.Provides controller tools

» Medium Term Conflict Detection (MTCD)

» Trajectory Prediction (TP)

» Monitoring aids

4.Altran appointed to develop new software for iFACTS

Needs to meet CAA’s stringent SW01 objectives

» In full operational service since December 2011.

» Formal functional specification in Z.

» Almost all code in SPARK – 250kloc logical.

» Proved “type (and memory) safe” – i.e. for any input data and
state, no undefined behaviour, no crashes, no exceptions.

» 152,927 VCs, of which 98.76% discharged automatically. User-
defined lemmas and review for the remainder.

 “"The iFACTS system and operational concept is ground breaking and genuinely unique in the world of Air Traffic
Control. The new working process is already seeing significant benefits across the NATS business, and airports
and airline customers are seeing the benefit too.“

 Jonathan Astill, General Manager, Area Control, NATS

iFACTS

• Introductions
• Technology Graduation
• Life in Industry
• Asking some Questions…

Agenda

• So why haven’t formal methods taken
over the software industry?
• They lead to cheaper projects
• They lead to higher quality projects

• What more do you need?
• Why do we focus on critical software?

Discussion

“I don’t want to be locked into a tool from
a single vendor.”

• Actually I have some sympathy with this
one.

• But it’s not an issue limited to formal
methods.

• And it’s not such a big deal as you might
think because all projects freeze tools
early on.

Objections

“I’ve bought <tool> and it was very
expensive so I have to use it.”
• This is what happens when finance run

projects instead of engineers.
• Inhibits innovation, research, improvement,

and onward development.

Objections

“My team don’t know <tool> so we can’t
use it.”
• If your team have a good grounding in basic

computer science principles, then given the
right training, they can pick up any tool
quick enough.

• Another inhibitor to innovation.

Objections

“We want to use Industry Standards” or
“We want to use Industry Practice.”
• You should use Best Practice.

Objections

“We don’t like to spend more upfront.”
• Generally the cost profile of a formal

methods project has more spend before
code starts to be written.

• But all the data shows the spend overall is
lower.

Objections

“I want a sexy drag-and-drop graphical
interface.”
• You are shallow and vacuous.
• Tools exist; usability will follow users.

Objections

I conclude that industry rejection of formal
methods is not a logical position … but
how do you combat that?

• Tougher standards?
• End user education?
• Hide the formality?

Discussion

• We are currently rolling out a new test
approach as part of our verification toolset.

• Many teams automate the running of tests.
• We are automating the initial production of

tests too.
• It’s a hidden formal method.

ConTestor

• Is hiding the formality the way forward?

I don’t know … but nor do I currently know
anything better…

• University research in formal methods can
be deployed with great success in
industrial projects.

• Getting industry acceptance is the hardest
part.

So what have we learnt?

• It’s not a logical
rejection.

• It’s not clear what
the objection is.

• Stay Logical: We always need independent
up-to-date papers comparing formal and
non-formal approaches so that we can have
logical, data-based, discussions.

What must we do?

• Fight the illogical: We need
to bring formal methods to
the attention of industry in
new ways.

31

	Slide Number 1
	Formal Verification: �Will The Seedling Ever Flower?
	Agenda
	Agenda
	Slide Number 5
	Slide Number 6
	Our World – Critical Software
	Agenda
	Slide Number 9
	Slide Number 10
	What’s in the toolbox?
	SPARK: Technology Transfer Timeline
	Agenda
	SHOLIS
	MGKC
	EMU
	Tokeneer Demonstrator
	iFACTS
	Agenda
	Discussion
	Objections
	Objections
	Objections
	Objections
	Objections
	Objections
	Discussion
	ConTestor
	So what have we learnt?
	What must we do?
	Slide Number 31

