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File systems are complex and have bugs

File systems are complex (e.g., Linux ext4 is ∼60,000 lines of code)
and have many bugs:
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New file systems (and bugs) are introduced over time

Some bugs are serious: security exploits, data loss, etc.
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Much research in avoiding bugs in file systems

Most research is on finding bugs:
Crash injection (e.g., EXPLODE [OSDI’06])
Symbolic execution (e.g., EXE [Oakland’06])
Design modeling (e.g., in Alloy [ABZ’08])

Reduce
# bugs

Some elimination of bugs by proving:
FS without directories [Arkoudas et al. 2004]
BilbyFS [Keller, Amani, et al. 2014]
Flashix [Ernst et al. 2015]

Incomplete
+

no crashes
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File system must preserve data after crash

Crashes occur due
to power failures,
hardware failures, or
software bugs

Difficult because
crashes expose
many different
partially-updated
states

commit 353b67d8ced4dc53281c88150ad295e24bc4b4c5
--- a/fs/jbd/checkpoint.c
+++ b/fs/jbd/checkpoint.c
@@ -504,7 +503,25 @@ int cleanup_journal_tail(journal_t *journal)

spin_unlock(&journal->j_state_lock);
return 1;

}
+ spin_unlock(&journal->j_state_lock);
+
+ /*
+ * We need to make sure that any blocks that were recently written out
+ * --- perhaps by log_do_checkpoint() --- are flushed out before we
+ * drop the transactions from the journal. It’s unlikely this will be
+ * necessary, especially with an appropriately sized journal, but we
+ * need this to guarantee correctness. Fortunately
+ * cleanup_journal_tail() doesn’t get called all that often.
+ */
+ if (journal->j_flags & JFS_BARRIER)
+ blkdev_issue_flush(journal->j_fs_dev, GFP_KERNEL, NULL);

+ spin_lock(&journal->j_state_lock);
+ if (!tid_gt(first_tid, journal->j_tail_sequence)) {
+ spin_unlock(&journal->j_state_lock);
+ /* Someone else cleaned up journal so return 0 */
+ return 0;
+ }

/* OK, update the superblock to recover the freed space.
* Physical blocks come first: have we wrapped beyond the end of
* the log? */
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File system must preserve security after crash

Mistakes in crash handling can also lead to data disclosure

Two optimizations in Linux ext4: direct data write and log checksum
Subtle interaction: new file can contain other users’ data after crash
Bug introduced in 2008, fixed in 2014 (six years later!)

Author: Jan Kara <jack@suse.cz>
Date: Tue Nov 25 20:19:17 2014 -0500

ext4: forbid journal_async_commit in data=ordered mode

Option journal_async_commit breaks gurantees of data=ordered mode as it
sends only a single cache flush after writing a transaction commit
block. Thus even though the transaction including the commit block is
fully stored on persistent storage, file data may still linger in drives
caches and will be lost on power failure. Since all checksums match on
journal recovery, we replay the transaction thus possibly exposing stale
user data.

[...]
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Goal: certify a complete file system under crashes

A file system with a machine-checkable proof
that its implementation meets its specification
under normal execution
and under any sequence of crashes
including crashes during recovery
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Contributions

CHL: Crash Hoare Logic for persistent storage
Crash condition and recovery semantics
CHL automates parts of proof effort
Proofs mechanically checked by Coq

FSCQ: the first certified crash-safe file system
Basic Unix-like file system (not parallel)
Simple specification for a subset of POSIX (e.g., no fsync)
About 1.5 years of work, including learning Coq
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FSCQ runs standard Unix programs: mv, git, make, ...
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FSCQ runs standard Unix programs: mv, git, make, ...

TCB includes Coq’s extractor, Haskell compiler and runtime, ...
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How to specify what is “correct”?

Need a specification of “correct” behavior before we can prove anything

Look it up in the POSIX standard?

[...] a power failure [...] can cause data to be lost. The data
may be associated with a file that is still open, with one that has
been closed, with a directory, or with any other internal system
data structures associated with permanent storage. This data
can be lost, in whole or part, so that only careful inspection of
file contents could determine that an update did not occur.

IEEE Std 1003.1, 2013 Edition

POSIX is vague about crash behavior
POSIX’s goal was to specify “common-denominator” behavior
File system implementations have different interpretations
Leads to bugs in higher-level applications [Pillai et al. OSDI’14]
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This work: “correct” is transactional

Run every file-system call inside a transaction

def create(d, name):
log_begin()
newfile = allocate_inode()
newfile.init()
d.add(name, newfile)
log_commit()

log_begin and log_commit implement a write-ahead log on disk

After crash, replay any committed transaction in the write-ahead log

Q: How to formally specify both normal-case and crash behavior?

Q: How to specify that it’s safe to crash during recovery itself?
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Approach: Hoare Logic specifications

{pre} code {post}

SPEC disk_write(a, v )
PRE a 7→ v0
POST a 7→ v
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CHL extends Hoare Logic with crash conditions

{pre} code {post}
{crash}

SPEC disk_write(a, v )
PRE a 7→ v0
POST a 7→ v
CRASH a 7→ v0 ∨a 7→ v

CHL’s disk model matches what most other file systems assume:
writing a single block is an atomic operation
no data corruption

Disk model axiom specs: disk_write, disk_read, and disk_sync
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Certifying larger procedures

def bmap(inode, bnum):
if bnum >= NDIRECT:

indirect = log_read(inode.blocks[NDIRECT])
return indirect[bnum - NDIRECT]

else:
return inode.blocks[bnum]

pre post

crash

13 / 1



Certifying larger procedures

Need pre/post/crash conditions for each called procedure

Function bmap

if

log_read

return

return

pre post

crash
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CHL’s proof automation chains pre- and postconditions
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CHL’s proof automation combines crash conditions
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Certifying larger procedures

Remaining proof effort: changing representation invariants

Function bmap

if

log_read

return

return

pre post

crash
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Common pattern: representation invariant

SPEC log_write(a, v )
PRE disk: log_rep(ActiveTxn, start_state, old_state)

old_state: a 7→ v0
POST disk: log_rep(ActiveTxn, start_state, new_state)

new_state: a 7→ v
CRASH disk: log_rep(ActiveTxn, start_state, any )

log_rep is a representation invariant
Connects logical transaction state to an on-disk representation
Describes the log’s on-disk layout using many 7→ primitives
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Common pattern: representation invariant

SPEC log_write(a, v )
PRE disk: log_rep(ActiveTxn, start_state, old_state)

old_state: a 7→ v0 ? F
POST disk: log_rep(ActiveTxn, start_state, new_state)

new_state: a 7→ v ? F
CRASH disk: log_rep(ActiveTxn, start_state, any )

log_rep is a representation invariant
Connects logical transaction state to an on-disk representation
Describes the log’s on-disk layout using many 7→ primitives

Separation logic used to describe logical address spaces
Enables compact specifications
Enables proof automation
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Specifying an entire system call (simplified)

SPEC create(dnum, fn)
PRE disk: log_rep(NoTxn, start_state)

start_state: dir_rep(tree) ∧
∃ path, tree[path].inode = dnum ∧
fn /∈ tree[path]

POST disk: log_rep(NoTxn, new_state)
new_state: dir_rep(new_tree) ∧

new_tree = tree.update(path, fn, empty_file)
CRASH disk: log_rep(NoTxn, start_state) ∨

log_rep(NoTxn, new_state) ∨
∃ s, log_rep(ActiveTxn, start_state, s) ∨
log_rep(CommittedTxn, start_state, new_state) ∨ . . .
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Specifying log recovery

SPEC log_recover()
PRE disk: log_intact(last_state, committed_state)
POST disk: log_rep(NoTxn, last_state) ∨

log_rep(NoTxn, committed_state)
CRASH disk: log_intact(last_state, committed_state)

log_recover is idempotent

Crash condition implies pre condition
⇒ OK to run log_recover again after a crash
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CHL’s recovery semantics

create is atomic, if log_recover runs after every crash:

SPEC create(dnum, fn)
ON CRASH log_recover()
PRE disk: log_rep(NoTxn, start_state)

start_state: dir_rep(tree) ∧
∃ path, tree[path].inode = dnum ∧
fn /∈ tree[path]

POST disk: log_rep(NoTxn, new_state)
new_state: dir_rep(new_tree) ∧

new_tree = tree.update(path, fn, empty_file)
RECOVER disk: log_rep(NoTxn, start_state) ∨

log_rep(NoTxn, new_state)
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CHL summary

Key ideas: crash conditions and recovery semantics

CHL benefit: enables precise failure specifications
Allows for automatic chaining of pre/post/crash conditions
Reduces proof burden

CHL cost: must write crash condition for every function, loop, etc.
Crash conditions are often simple (above logging layer)
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FSCQ: building a file system on top of CHL

File system design is close
to v6 Unix, plus logging,
minus symbolic links

Implementation aims to
reduce proof effort
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Reducing proof effort

Reuse proven components

E.g., finding a free object in a bitmap allocator
Typical C code: iterate over each 64-bit chunk in a 4KB block, use
bitwise operations to find a zero bit
Less proof effort: use marshaling library; decode bitmap block into
32,768-element array of 1-bit elements; loop over array

Many precise internal abstraction layers

Files: inode; block-level file; byte-level file
Directory: directory entries; filename encoding; tree structure

Simpler specifications

No hard links⇒ logical state is a tree, not a graph
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Evaluation

What bugs do FSCQ’s theorems eliminate?

How much development effort is required for FSCQ?

How well does FSCQ perform?
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FSCQ’s theorems eliminate many bugs

One data point: once theorems proven, no implementation bugs
Did find some mistakes in spec, as a result of end-to-end checks
E.g., forgot to specify that extending a file should zero-fill

Common classes of bugs found in Linux file systems:

Bug class Eliminated in FSCQ?

Violating file or directory invariants Yes
Improper handling of corner cases Yes
Returning incorrect error codes Some
Resource-allocation bugs Some
Mistakes in logging and recovery logic Yes
Misusing the logging API Yes
Bugs due to concurrent execution No concurrency
Low-level programming errors Yes
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Implementing CHL and FSCQ in Coq

Total of ∼30,000 lines of verified code, specs, and proofs
Comparison: xv6 file system is ∼3,000 lines of code
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Change effort proportional to scope of change

Reordering disk writes:
∼1,000 lines in FSCQLOG

Indirect blocks:
∼1,500 lines in inode layer

Buffer cache:
∼300 lines in FSCQLOG,
∼600 lines in rest of FSCQ

Optimize log layout:
∼150 lines in FSCQLOG

Modest incremental effort, partially
due to CHL’s proof automation and
FSCQ’s internal layers
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Performance comparison

File-system-intensive workload

Software development: git, make
LFS benchmark
mailbench: qmail-like mail server

Compare with other (non-certified) file systems

xv6 (similar design, written in C)
ext4 (widely used on Linux), in non-default synchronous mode
to match FSCQ’s guarantees

Running on an SSD on a laptop
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Running time for benchmark workload
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Opportunity: change semantics to defer durability
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Directions for future research

Formalizing deferred durability (e.g., fsync)

Certifying a parallel (multi-core) file system

Certifying applications with CHL (database, key-value store, ...)

Reducing TCB size and generating efficient executable code
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Conclusions

CHL helps specify and prove crash safety
Crash conditions
Recovery execution semantics

FSCQ: first certified crash-safe file system
Usable performance
1.5 years of effort, including learning Coq and building CHL

Many open problems and potential for fundamental contributions

https://github.com/mit-pdos/fscq-impl

28 / 1


