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Tool-assisted formal verification

Old, fundamental ideas. ..
(Hoare logic, 1960's; model checking, abstract interpretation, 1970's)

that remained theoretical for a long time. ..
are now implemented and automated in verification tools. . .

usable and sometimes used in the critical software industry.

X. Leroy (Inria) Trust in tools 2016-04-05 2 /35



Examples of uses for avionics software

Simulink, Scade

AiT WCET

(precise time bounds) Executable




Examples of uses for avionics software

Simulink, Scade

Astrée
(absence of run-time errors,
incl. floating-point)

AiT WCET

(precise time bounds) Executable




Examples of uses for avionics software

Simulink, Scade

Caveat
(program proof) (*)

Astrée
(absence of run-time errors,
incl. floating-point)

AiT WCET

(precise time bounds) Executable

(*) Motto: “unit proofs as a replacement for unit tests”



Examples of uses for avionics software

Rockwell-Collins toolchain

(model-checking + proof) Silg S

Caveat
(program proof) (*)

Astrée
(absence of run-time errors,
incl. floating-point)

AiT WCET

(precise time bounds) Executable

(*) Motto: “unit proofs as a replacement for unit tests”
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Trust in tools

that participate in
the production and verification of critical software
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Trust in formal verification

Simulation  ----- Simulink, Scade J8

Model-checking i . Code generator ?
Program proof -----
Static analysis

Compiler ?

Testing  --—--- Executable

The unsoundness risk: Are verification tools semantically sound?

The miscompilation risk: Are compilers semantics-preserving?
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Miscompilation happens

We tested thirteen production-quality C compilers and, for each, found
situations in which the compiler generated incorrect code for accessing
volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years using it to
find compiler bugs. During this period we reported more than 325
previously unknown bugs to compiler developers. Every compiler we
tested was found to crash and also to silently generate wrong code
when presented with valid input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011
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An example of optimizing compilation

double dotproduct(int n, double * a, double * b)
{
double dp = 0.0;
int 1i;
for (i = 0; i < mn; i++) dp += al[i] * b[il;
return dp;

}

Compiled with a good compiler, then manually decompiled back to C...
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double dotproduct(int n, double a[l, double b[]l) {

L17:

Li6:

L18:

L19:

L5:

Li4:

dp = 0.0;

if (n <= 0) goto L5;

r2 =n - 3; f1 = 0.0; rl = 0; £10 = 0.0; f11
if (r2 > n || r2 <= 0) goto L19;
prefetch(al[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

£12 = a[0]; £13 = b[0]; f14 = a[1]; f15 = b[1];

rl = 8; if (8 >= r2) goto L16;

£16 = b[2]; £18 = a[2]; £f17 = £f12 * f13;
£19 = b[3]; £20 = a[3]; f15 = f14 * f15;
£12 = a[4]; f16 = £18 * £16;

f19 =

f11 += £17; rl += 4; £10 += f15;

£15 = b[5]; prefetch(a[20]); prefetch(b[24]);
f1 += f16; dp += £19; b += 4;

if (r1 < r2) goto L17;

£15 = f14 x f15; £21 = b[2]; £23 = a[2]; £22 = f12

£24 = b[3]; £25 = al3]; f21 = £23 * f21;

£12 = a[4]; £13 = b[4]; £24 = £25 * £24; £10 = £10

a += 4; b += 4; f14 = a[8]; f15 = b[8];
£11 += £22; £1 += £21; dp += £24;

£26 = b[2]; £27 = a[2]; f14 = f14 * f15;
£28 = b[3]; f29 = al[3]; f12 = f1
a += 4; £28 = £29 * £28; b += 4;
£10 += f14; f11 += £12; f1 += £26;
dp += £28; dp += f1; dp += £10; dp += fi1
if (r1 >= n) goto L5;

£30 = a[0]; £18 = b[0]; rl += 1; a += 8; f18 = £30

dp += £18;
if (r1 < n) goto L19;
return dp;

£29 * £19; £13 = b[4]; a += 4; f14 = a[1];

* £13; £26 = £27

*

+

*

£12 = a[0]; £13 = b[0]; f14 = a[1]l; f15 = b[1]; goto

Leroy (Inria)

£13;

£15;

£26;

£18;

L18;
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L17: f16 = b[2]; £18 = a[2]; f17
f19 = b[3]; £20 = a[3]; £f15

£f12 * £13;
f14 * £15;

£f12 = a[4]; f16 = £18 * f16;

£19 = £29 *x £19; f13 = b[4]; a += 4; f14 = a[1];
£11 += £17; rl1 += 4; £10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += £16; dp += £19; b += 4;
if (rl < r2) goto L17;
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double dotproduct(int n, double a[l, double b[]l) {
dp = 0.0;
if (n <= 0) goto L5;
r2=n - 3; f1 = 0.0; r1 = 0; £10 = 0.0; f11 = 0.0;
if (r2 > n || r2 <= 0) goto L19;
prefetch(al[16]); prefetch(b[16]);
if (4 >= r2) goto L14;
prefetch(a[20]); prefetch(b[20]);
£12 = a[0]; £13 = b[0]; f14 = a[1]; f15 = b[1];
rl = 8; if (8 >= r2) goto L16;

L16: £15 = f14 * f15; £21 = b[2]; £23 = a[2]; £22 = £f12 * f13;
£24 = b[3]; £25 = al3]; f21 = £23 * f21;
£12 = a[4]; £13 = b[4]; 24 = £25 * f24; 10 = £10 + f15;
a += 4; b += 4; f14 = a[8]; f15 = b[8];
£11 += £22; £1 += £21; dp += £24;

L18: £26 = b[2]; £27 = a[2]; f14 = f14 * £15;
£28 = b[3]; £29 = al3]; f12 = £f12 * f13; £26 = £27 * £26;
a += 4; £28 = £29 * £28; b += 4;
£10 += f14; f11 += £12; f1 += £26;
dp += £28; dp += f1; dp += £10; dp += f11;
if (r1 >= n) goto L5;

L19: £30 = a[0]; f18 = b[0]; rl += 1; a += 8; f18 = £30 * f18;
dp += £18;
if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; £13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

Leroy (Inria) Trust in tools

b += 8;

2016-04-05

8/ 35



Formal verification of tools

Why not formally verify the compiler and the verification tools themselves?

(using program proof)
After all, these tools have simple specifications:

Correct compiler: if compilation succeeds, the generated code
behaves as prescribed by the semantics of the source program.

Sound verification tool: if the tool reports no alarms, all
executions of the source program satisfy a given safety property.
As a corollary, we obtain:

The generated code satisfies the given safety property.
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An old idea. ..

John McCarthy
James Painter!

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS®

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the deserip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references (1], (2], [3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967
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An old idea. ..
3

Proving Compiler Correctness
in a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presenited enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972.

oy (Inria) Trust in tools
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CompCert:
a formally-verified C compiler
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The CompCert project

(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

@ Source language: a very large subset of C99.

o Target language: PowerPC/ARM /x86 assembly.

@ Generates reasonably compact and fast code
= careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not trying to
prove an existing compiler.
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The formally verified part of the compiler

ide-effects out_{ . ) type elimination
CompCert C Sleereree o Clight i ————— C#minor
of expressions \ ) loop 5|mpI|f|cat|onsl

stack allocation

Optimizations: constant prop., CSE,
of “&" variables

inlining, tail calls {

CFG construction ( . ) instruction ( .
RTL = CminorSel = - Cminor
) expr. decomp. \ ) selection

register allocation (IRC)

calling conventions
Y

| linearization ( ) layout of
LTL > Linear > Mach
of the CFG { ! ) stack frames

(Asm x86j (Asm ARMJ (Asm PPCJ
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Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is entirely
machine-checked, using the Coq proof assistant.

Proof pattern: simulation/refinement diagrams such as:

Original program Transformed program
State 1 invariant , g
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Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is entirely
machine-checked, using the Coq proof assistant.

Proof pattern: simulation/refinement diagrams such as:

Original program Transformed program
State 1 invariant , m
(not stuck) State 1 3
‘ 2
I )
*  t ti 9
v v
®
State 2 --------------- State 2/ 3
Invariant Y
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Formally verified using Coq

As a consequence, the observable behavior of the compiled code (trace of

I/O operations) is identical to one of the possible behaviors of the source
code, or improves over one:

Source code: 1.01.02.12.03 i1.01.T undefined behavior

Compiled code: i1.01.02.i2.03 i1.01.02. .

(same behavior) (“improved” undefined behavior)

Theorem transf_c_program_preservation:
forall p tp beh,
transf_c_program p = 0K tp ->
program_behaves (Asm.semantics tp) beh ->
exists beh’, program_behaves (Csem.semantics p) beh’
/\ behavior_improves beh’ beh.
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Compiler verification patterns (for each pass)

Verified transformation Verified translation validation

transformation transformation

— ]

validator
External solver with verified validation

transformation

I = formally verified
checker

B — not verified
untrusted solver
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Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in Coq'’s
specification language, using pure functional style.

@ Monads to handle errors and mutable state.

@ Purely functional data structures.

Coq's extraction mechanism produces executable Caml code from these
specifications.

Claim: purely functional programming is the shortest path to writing and
proving a program.
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The whole Compcert compiler

preprocessing, parsing, AST construction
C source , ,
type-checking, de-sugaring

<
1)
Register allocation ' 7
1 [e N
| 8
Code linearization heuristics > _g
I &
1 -~
1
bl g: f !
assembling printing! o
Executable — Assembly ' AST Asm
linking asm syntax
|
1
I
Part of the TCB Not proved ! Proved in Coq
1
1

Not part of the TCB (hand-written in Caml)
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Performance of generated code
(On a Power 7 processor)

Execution time mm gcc ~00 mm CompCertmm goc 01 gee 03
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A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are absent. As of
early 2011, the under-development version of CompCert is the
only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011
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Verasco:
a formally-verified static analyzer
based on abstract interpretation
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Trust in formal verification (again)

Simulation  ----- Simulink, Scade

Model-checking i . Code generator
Program proof -----

Static analysis Compiler

Testing  --—--- Executable

The unsoundness risk: Are verification tools semantically sound?
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The Verasco project
J.H. Jourdan, V. Laporte, et al

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation:

@ Language analyzed: the CompCert subset of C.

@ Property established: absence of run-time errors
(out-of-bound array accesses, null pointer dereferences, division by zero, etc).

@ Nontrivial abstract domains, including relational domains.
@ Modular architecture inspired from Astrée's.

@ Decent (but not great) alarm reporting.

Slogan: if “CompCert = 1/10th of GCC but formally verified"”,
likewise “Verasco = 1/10th of Astrée but formally verified".

X. Leroy (Inria) Trust in tools 2016-04-05 24 / 35



Abstract interpretation for dummies

Execute (“interpret”) the program using a non-standard semantics that:

@ Computes over an abstract domain of the desired properties
(e.g. "x € [n1, n]" for interval analysis)
instead of the concrete domain of values and states.

@ Handles boolean conditions, even if they cannot be resolved statically.
(THEN and ELSE branches of IF are considered both taken.)
(Loops execute arbitrarily many times.)

@ Always terminates.

X. Leroy (Inria) Trust in tools 2016-04-05 25/ 35



Example of abstract interpretation with intervals

x € [—o0, 0]

IF x < 0 THEN

x := 0;
ELSE IF x > 1000 THEN

x := 1000;
ELSE

SKIP;
ENDIF

X. Leroy (Inria) Trust in tools



Example of abstract interpretation with intervals

x € [—o0, 0]

IF x < 0 THEN

x := 0; x € [0,0]
ELSE IF x > 1000 THEN

x := 1000;
ELSE

SKIP;
ENDIF
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Example of abstract interpretation with intervals

x € [—o0, 0]
IF x < 0 THEN

x := 0; x € [0,0]
ELSE IF x > 1000 THEN

x := 1000; x € [1000, 1000]
ELSE

SKIP;
ENDIF

X. Leroy (Inria) Trust in tools



Example of abstract interpretation with intervals

IF x < 0 THEN
x := 0;

ELSE IF x > 1000 THEN
x := 1000;

ELSE
SKIP;

ENDIF

X. Leroy (Inria)

x € [—o0, 0]
x € [0,0]
x € [1000, 1000]

x € [0, 00] N[00, 1000] = [0, 1000]
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Example of abstract interpretation with intervals

IF x < 0 THEN
x := 0;

ELSE IF x > 1000 THEN
x := 1000;

ELSE
SKIP;

ENDIF

X. Leroy (Inria)

x € [~00,00]

x € [0,0]

x € [1000, 1000]

x € [0, 00] N [—00, 1000] = [0, 1000]

x € [0,0] U [1000, 1000] U [0, 1000] = [0, 1000]
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Example of abstract interpretation with intervals

x := 0; x € [0,0]

DONE
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Example of abstract interpretation with intervals

x := 0; x € [0,0]

WHILE x <= 1000 DO
x € [0,0] N [—o0, 1000] = [0, 0]
X :=x + 1;
x €[1,1]
DONE
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Example of abstract interpretation with intervals

x := 0; x € [0,0]

WHILE x <= 1000 DO
x € ([0,0] UL, 1]) N [~ o0, 1000] = [0, 1]

X :=x + 1;
x €[1,2]
DONE
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Example of abstract interpretation with intervals

x := 0; x € [0,0]

WHILE x <= 1000 DO
x € ([0,0] UL, 2]) N [~ o0, 1000] = [0,2]

X :=x + 1;
x €[1,3]
DONE
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Example of abstract interpretation with intervals

x = 0; x € [0,0]
WHILE x <= 1000 DO
x € [0, o0]
X :=x + 1;
x € [1, 0]
DONE

Widening heuristic to accelerate convergence
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Example of abstract interpretation with intervals

x := 0; x € [0,0]

x € ([0,0] UL, o0]) N [~o0, 1000] = [0, 1000]

x € [1,1001]
DONE

Narrowing iteration to improve the result
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Example of abstract interpretation with intervals

DONE

Fixpoint reached!

X. Leroy (Inria)

x € [0,0]

x € ([0,0] U1, 1001]) N [—o0, 1000] = [0, 1000]

x € [1,1001]

Trust in tools



Example of abstract interpretation with intervals

x := 0; x € [0,0]

x € ([0,0] U1, 1001]) N [—o0, 1000] = [0, 1000]

x € [1,1001]
DONE

x € [1001, 00] N [1,1001] = [1001,1001]

Fixpoint reached!
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Properties inferred by Verasco

Properties of a single variable / memory cell: (value analysis)

Variation intervals x € [e1; ]
Integer congruences xmod c; = ¢
Points-to and nonaliasing p poinsTo {x1,...,Xn}

Relations between variables: (relational analysis)

Polyhedra cix1+--+cpxp < C
Octagons +x1 X <c
Symbolic equalities x = expr

X. Leroy (Inria) Trust in tools 2016-04-05
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Architecture
CompCert compiler
source {—> C — Clight = C#minor — Cminor — J

Control [ Abstract interpreter )—» OK / Alarms
Stte [ Memory & soers sosacion ) "
Numbers |

[ Channel-based combination of domains J

[ Convex } {Symbolic NR — R

polyhedra equalities
Integer & F.P. Integer
[[Octagons | intervals | |congruences
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Proof methodology

The abstract interpretation framework, with some simplifications:

@ Only prove the soundness of the analyzer,
using the v half of Galois connections:

~y : abstract object — p(concrete things)

@ Don't prove relative optimality of abstractions
(the « half of Galois connections).

@ Don't prove termination of the analyzer.
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Status of Verasco

It works!
e Fully proved (46000 lines of Coq)
o Executable analyzer obtained by extraction.

@ Able to show absence of run-time errors in small but nontrivial C
programs.

It needs improving!

@ Some loops need full unrolling
(to show that an array is fully initialized at the end of a loop).

@ Analysis is slow (e.g. 10 sec for 100 LOC).

X. Leroy (Inria) Trust in tools 2016-04-05 31/35



Conclusions and future work
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Conclusions

CompCert and especially Verasco are still ongoing projects.
However, they demonstrate that the formal verification of compilers, static

analyzers, and related tools is feasible.
(Within the limitations of today’s proof assistants.)

X. Leroy (Inria) Trust in tools 2016-04-05 33 /35



Future work

For verified compilers:
@ Other source languages: functional, reactive.
@ More optimizations, esp. loop optimizations.

@ Increase confidence even further.

For static analyzers based on abstract interpretation:
o Algorithmic efficiency.

@ More advanced domains (e.g. shape analysis).

For both:

@ Separate compilation / modular static analysis.

@ Support for shared-memory concurrency.
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In closing. ..

Critical software deserves the most trustworthy tools
that computer science can produce.

Let's make this a reality!
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